Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parametric equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Parametric plane curves== {{further|Plane curve}} ===Parabola=== The simplest equation for a [[parabola]], <math display="block">y = x^2</math> can be (trivially) parameterized by using a free parameter {{mvar|t}}, and setting <math display="block">x = t, y = t^2 \quad \mathrm{for} -\infty < t < \infty.</math> ===Explicit equations=== More generally, any curve given by an explicit equation <math display="block">y = f(x)</math> can be (trivially) parameterized by using a free parameter {{mvar|t}}, and setting <math display="block">x = t, y = f(t) \quad \mathrm{for} -\infty < t < \infty.</math> ===Circle=== A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation <math display="block"> x^2 + y^2 = 1.</math> This equation can be parameterized as follows: <math display="block">(x,y)=(\cos(t),\; \sin(t))\quad\mathrm{for}\ 0\leq t < 2\pi.</math> With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only [[rational function]]s (that is fractions of two [[polynomial]]s) are preferred, if they exist. In the case of the circle, such a ''{{dfn|rational parameterization}}'' is <math display="block">\begin{align} x &= \frac{1 - t^2}{1 + t^2} \\ y &= \frac{2t}{1 + t^2}\,. \end{align}</math> With this pair of parametric equations, the point {{math|(β1, 0)}} is not represented by a [[real number|real]] value of {{mvar|t}}, but by the [[limit (mathematics)|limit]] of {{mvar|x}} and {{mvar|y}} when {{mvar|t}} tends to [[infinity]]. ===Ellipse=== An [[ellipse]] in canonical position (center at origin, major axis along the {{mvar|x}}-axis) with semi-axes {{mvar|a}} and {{mvar|b}} can be represented parametrically as <math display="block">\begin{align} x &= a\,\cos t \\ y &= b\,\sin t\,. \end{align}</math> An ellipse in general position can be expressed as <math display="block">\begin{alignat}{4} x ={}&& X_\mathrm{c} &+ a\,\cos t\,\cos \varphi {}&&- b\,\sin t\,\sin\varphi \\ y ={}&& Y_\mathrm{c} &+ a\,\cos t\,\sin \varphi {}&&+ b\,\sin t\,\cos\varphi \end{alignat}</math> as the parameter {{mvar|t}} varies from {{math|0}} to {{math|2''{{pi}}''}}. Here {{math|(''X''{{sub|c}} , ''Y''{{sub|c}})}} is the center of the ellipse, and {{mvar|Ο}} is the angle between the {{mvar|x}}-axis and the major axis of the ellipse. Both parameterizations may be made [[rational function|rational]] by using the [[tangent half-angle formula]] and setting <math display="inline">\tan\frac{t}{2} = u\,.</math> === Lissajous curve === [[File:Lissajous curve 3by2.svg|thumbnail|A Lissajous curve where {{math|1=''k{{sub|x}}'' = 3}} and {{math|1=''k{{sub|y}}'' = 2}}.]] A [[Lissajous curve]] is similar to an ellipse, but the {{mvar|x}} and {{mvar|y}} [[sinusoid]]s are not in phase. In canonical position, a Lissajous curve is given by <math display="block">\begin{align} x &= a\,\cos(k_xt) \\ y &= b\,\sin(k_yt) \end{align}</math> where {{mvar|k{{sub|x}}}} and {{mvar|k{{sub|y}}}} are constants describing the number of lobes of the figure. ===Hyperbola=== An east-west opening [[hyperbola]] can be represented parametrically by <math display="block">\begin{align} x &= a\sec t + h \\ y &= b\tan t + k\,, \end{align}</math> or, [[rational function|rationally]] <math display="block">\begin{align} x &= a\frac{1 + t^2}{1 - t^2} + h \\ y &= b\frac{2t}{1 - t^2} + k\,. \end{align}</math> A north-south opening hyperbola can be represented parametrically as <math display="block">\begin{align} x &= b\tan t + h \\ y &= a\sec t + k\,, \end{align}</math> or, rationally <math display="block">\begin{align} x &= b\frac{2t}{1 - t^2} + h \\ y &= a\frac{1 + t^2}{1 - t^2} + k\,. \end{align}</math> In all these formulae {{math|(''h'' , ''k'')}} are the center coordinates of the hyperbola, {{mvar|a}} is the length of the semi-major axis, and {{mvar|b}} is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points {{math|(''βa'' , 0)}} and {{math|(0 , ''βa'')}}, respectively, are not represented by a real value of {{mvar|t}}, but are the limit of {{mvar|x}} and {{mvar|y}} as {{mvar|t}} tends to infinity. ===Hypotrochoid=== A [[hypotrochoid]] is a curve traced by a point attached to a circle of radius {{mvar|r}} rolling around the inside of a fixed circle of radius {{mvar|R}}, where the point is at a distance {{mvar|d}} from the center of the interior circle. <gallery> Image:2-circles hypotrochoid.gif|<div class="center">A hypotrochoid for which {{math|1= ''r'' = ''d''}}</div> Image:HypotrochoidOutThreeFifths.gif|<div class="center">A hypotrochoid for which {{math|1= ''R'' = 5}}, {{math|1= ''r'' = 3}}, {{math|1= ''d'' = 5}}</div> </gallery> The parametric equations for the hypotrochoids are: <math display="block">\begin{align} x (\theta) &= (R - r)\cos\theta + d\cos\left({R - r \over r}\theta\right) \\ y (\theta) &= (R - r)\sin\theta - d\sin\left({R - r \over r}\theta\right)\,. \end{align}</math> Some examples: <gallery> Image: Param1a 6 4 1 a2.jpg|<div class="center">{{math|1= ''R'' = 6}} {{math|1= ''r'' = 4}} {{math|1= ''d'' = 1}}</div> Image: Param1a 7 4 1 a4.jpg|<div class="center">{{math|1= ''R'' = 7}} {{math|1= ''r'' = 4}} {{math|1= ''d'' = 1}}</div> Image: Param1a 8 3 2 a3.jpg|<div class="center">{{math|1= ''R'' = 8}} {{math|1= ''r'' = 3}} {{math|1= ''d'' = 2}}</div> Image: Param1a 7 4 2 a4.jpg|<div class="center">{{math|1= ''R'' = 7}} {{math|1= ''r'' = 4}} {{math|1= ''d'' = 2}}</div> Image: Param1a 15 14 1 a14.jpg|<div class="center">{{math|1= ''R'' = 15}} {{math|1= ''r'' = 14}} {{math|1= ''d'' = 1}}</div> </gallery>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)