Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Particle physics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Standard Model == {{Main|Standard Model}} The current state of the classification of all elementary particles is explained by the [[Standard Model]], which gained widespread acceptance in the mid-1970s after [[experimental confirmation]] of the existence of [[quark]]s. It describes the [[strong interaction|strong]], [[weak interaction|weak]], and [[electromagnetism|electromagnetic]] [[fundamental interaction]]s, using mediating [[gauge boson]]s. The species of gauge bosons are eight [[gluon]]s, [[W and Z bosons|{{SubatomicParticle|W boson-}}, {{SubatomicParticle|W boson+}} and {{SubatomicParticle|Z boson}} bosons]], and the [[photon]].<ref name="Baker p 120">{{cite book |last=Baker |first=Joanne |title=50 quantum physics ideas you really need to know |date=2013 |isbn=978-1-78087-911-6 |publication-place=London |pages=120β123 |oclc=857653602}}</ref> The Standard Model also contains 24 [[fundamental particle|fundamental]] [[fermion]]s (12 particles and their associated anti-particles), which are the constituents of all [[matter]].<ref name="pdg">{{cite journal |last=Nakamura |first=K. |date=1 July 2010 |title=Review of Particle Physics |journal=Journal of Physics G: Nuclear and Particle Physics |volume=37 |issue=7A |pages=1β708 |bibcode=2010JPhG...37g5021N |doi=10.1088/0954-3899/37/7A/075021 |pmid=10020536 |doi-access=free |hdl-access=free |hdl=10481/34593}}</ref> Finally, the Standard Model also predicted the existence of a type of [[boson]] known as the [[Higgs boson]]. On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson.<ref>{{cite journal |last=Mann |first=Adam |date=28 March 2013 |title=Newly Discovered Particle Appears to Be Long-Awaited Higgs Boson |url=https://www.wired.com/wiredscience/2012/07/higgs-boson-discovery/ |url-status=live |journal=Wired Science |archive-url=https://web.archive.org/web/20140211212906/http://www.wired.com/wiredscience/2012/07/higgs-boson-discovery/ |archive-date=11 February 2014 |access-date=6 February 2014}}</ref> The Standard Model, as currently formulated, has 61 elementary particles.<ref name="braibant">{{cite book |last1=Braibant |first1=S. |url=https://books.google.com/books?id=0Pp-f0G9_9sC&q=61+fundamental+particles&pg=PA314 |title=Particles and Fundamental Interactions: An Introduction to Particle Physics |last2=Giacomelli |first2=G. |last3=Spurio |first3=M. |publisher=[[Springer Science+Business Media|Springer]] |year=2009 |isbn=978-94-007-2463-1 |pages=313β314 |access-date=19 October 2020 |archive-url=https://web.archive.org/web/20210415025723/https://books.google.com/books?id=0Pp-f0G9_9sC&q=61+fundamental+particles&pg=PA314 |archive-date=15 April 2021 |url-status=live}}</ref> Those elementary particles can combine to form composite particles, accounting for the hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the [[experiment]]al tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See [[Theory of Everything]]). In recent years, measurements of [[neutrino]] [[rest mass|mass]] have provided the first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model.<ref>{{cite web |title=Neutrinos in the Standard Model |url=https://t2k-experiment.org/neutrinos/in-the-standard-model |url-status=live |archive-url=https://web.archive.org/web/20191016010901/https://t2k-experiment.org/neutrinos/in-the-standard-model/ |archive-date=16 October 2019 |access-date=15 October 2019 |publisher=The T2K Collaboration}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)