Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Particle velocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Progressive sine waves== The particle displacement of a ''progressive [[sine wave]]'' is given by :<math>\delta(\mathbf{r},\, t) = \delta_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0}),</math> where *<math>\delta_\mathrm{m}</math> is the [[amplitude]] of the particle displacement; *<math>\varphi_{\delta, 0}</math> is the [[phase shift]] of the particle displacement; *<math>\mathbf{k}</math> is the [[angular wavevector]]; *<math>\omega</math> is the [[angular frequency]]. It follows that the particle velocity and the sound pressure along the direction of propagation of the sound wave ''x'' are given by :<math>v(\mathbf{r},\, t) = \frac{\partial \delta(\mathbf{r},\, t)}{\partial t} = \omega \delta \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = v_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{v, 0}),</math> :<math>p(\mathbf{r},\, t) = -\rho c^2 \frac{\partial \delta(\mathbf{r},\, t)}{\partial x} = \rho c^2 k_x \delta \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = p_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{p, 0}),</math> where *<math>v_\mathrm{m}</math> is the amplitude of the particle velocity; *<math>\varphi_{v, 0}</math> is the phase shift of the particle velocity; *<math>p_\mathrm{m}</math> is the amplitude of the acoustic pressure; *<math>\varphi_{p, 0}</math> is the phase shift of the acoustic pressure. Taking the Laplace transforms of <math>v</math> and <math>p</math> with respect to time yields :<math>\hat{v}(\mathbf{r},\, s) = v_\mathrm{m} \frac{s \cos \varphi_{v,0} - \omega \sin \varphi_{v,0}}{s^2 + \omega^2},</math> :<math>\hat{p}(\mathbf{r},\, s) = p_\mathrm{m} \frac{s \cos \varphi_{p,0} - \omega \sin \varphi_{p,0}}{s^2 + \omega^2}.</math> Since <math>\varphi_{v,0} = \varphi_{p,0}</math>, the amplitude of the specific acoustic impedance is given by :<math>z_\mathrm{m}(\mathbf{r},\, s) = |z(\mathbf{r},\, s)| = \left|\frac{\hat{p}(\mathbf{r},\, s)}{\hat{v}(\mathbf{r},\, s)}\right| = \frac{p_\mathrm{m}}{v_\mathrm{m}} = \frac{\rho c^2 k_x}{\omega}.</math> Consequently, the amplitude of the particle velocity is related to those of the particle displacement and the sound pressure by :<math>v_\mathrm{m} = \omega \delta_\mathrm{m},</math> :<math>v_\mathrm{m} = \frac{p_\mathrm{m}}{z_\mathrm{m}(\mathbf{r},\, s)}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)