Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Per-unit system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Base quantities == Generally base values of power and voltage are chosen. The base power may be the rating of a single piece of apparatus such as a motor or generator. If a system is being studied, the base power is usually chosen as a convenient round number such as 10 MVA or 100 MVA. The base voltage is chosen as the nominal rated voltage of the system. All other base quantities are derived from these two base quantities. Once the base power and the base voltage are chosen, the base current and the base impedance are determined by the natural laws of electrical circuits. The base value should only be a magnitude, while the per-unit value is a phasor. The phase angles of complex power, voltage, current, impedance, etc., are not affected by the conversion to per unit values. The purpose of using a per-unit system is to simplify conversion between different transformers. Hence, it is appropriate to illustrate the steps for finding per-unit values for voltage and impedance. First, let the base power (''S''{{sub|base}}) of each end of a transformer become the same. Once every ''S'' is set on the same base, the base voltage and base impedance for every transformer can easily be obtained. Then, the real numbers of impedances and voltages can be substituted into the per-unit calculation definition to get the answers for the per-unit system. If the per-unit values are known, the real values can be obtained by multiplying by the base values. By convention, the following two rules are adopted for base quantities: * The base power value is the same for the entire power system of concern. * The ratio of the voltage bases on either side of a transformer is selected to be the same as the ratio of the transformer voltage ratings. With these two rules, a per-unit impedance remains unchanged when referred from one side of a transformer to the other. This allows the ideal transformer to be eliminated from a transformer model.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)