Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plummer model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == The mass enclosed within radius <math>r</math> is given by <math display="block">M(<r) = 4\pi\int_0^r r'^2 \rho_P(r') \,dr' = M_0 \frac{r^3}{(r^2 + a^2)^{3/2}}.</math> Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive article.<ref>Dejonghe, H. (1987), [http://adsabs.harvard.edu/abs/1987MNRAS.224...13D A completely analytical family of anisotropic Plummer models]. ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''224''', 13.</ref> Core radius <math>r_c</math>, where the surface density drops to half its central value, is at <math display="inline">r_c = a \sqrt{\sqrt{2} - 1} \approx 0.64 a</math>. [[Half-mass radius]] is <math>r_h = \left(\frac{1}{0.5^{2/3}} - 1\right)^{-0.5} a \approx 1.3 a.</math> [[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>. The 2D surface density is: <math display="block"> \Sigma(R) = \int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}} = \frac{M_0a^2}{\pi(a^2+R^2)^2},</math> and hence the 2D projected mass profile is: <math display="block">M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}.</math> In astronomy, it is convenient to define 2D half-mass radius which is the radius where the 2D projected mass profile is half of the total mass: <math>M(R_{1/2}) = M_0/2</math>. For the Plummer profile: <math>R_{1/2} = a</math>. The escape velocity at any point is <math display="block">v_{\rm esc}(r)=\sqrt{-2\Phi(r)}=\sqrt{12}\,\sigma(r) ,</math> For bound orbits, the radial turning points of the orbit is characterized by [[specific energy]] <math display="inline">E = \frac{1}{2} v^2 + \Phi(r)</math> and [[specific relative angular momentum|specific angular momentum]] <math>L = |\vec{r} \times \vec{v}|</math> are given by the positive roots of the [[cubic function|cubic equation]] <math display="block">R^3 + \frac{GM_0}{E} R^2 - \left(\frac{L^2}{2E} + a^2\right) R - \frac{GM_0a^2}{E} = 0,</math> where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>: two positive and one negative, given that <math>L < L_c(E)</math>, where <math>L_c(E)</math> is the specific angular momentum for a circular orbit for the same energy. Here <math>L_c</math> can be calculated from single real root of the [[Cubic function #The discriminant|discriminant of the cubic equation]], which is itself another [[cubic function|cubic equation]] <math display="block">\underline{E}\, \underline{L}_c^3 + \left(6 \underline{E}^2 \underline{a}^2 + \frac{1}{2}\right)\underline{L}_c^2 + \left(12 \underline{E}^3 \underline{a}^4 + 20 \underline{E} \underline{a}^2 \right) \underline{L}_c + \left(8 \underline{E}^4 \underline{a}^6 - 16 \underline{E}^2 \underline{a}^4 + 8 \underline{a}^2\right) = 0,</math> where underlined parameters are dimensionless in [[N-body units|Henon units]] defined as <math>\underline{E} = E r_V / (G M_0)</math>, <math>\underline{L}_c = L_c / \sqrt{G M r_V}</math>, and <math>\underline{a} = a / r_V = 3 \pi/16</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)