Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson bracket
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition in canonical coordinates== In [[canonical coordinates]] (also known as [[Darboux coordinates]]) <math> (q_i,\, p_i)</math> on the [[phase space]], given two functions <math> f(p_i,\, q_i, t)</math> and <math> g(p_i,\, q_i, t)</math>,<ref group="Note"><math> f(p_i,\, q_i,\, t)</math> means <math>f</math> is a function of the <math>2N + 1</math> independent variables: momentum, <math>p_{1 \dots N}</math>; position, <math>q_{1 \dots N}</math>; and time, <math>t</math></ref> the Poisson bracket takes the form <math display="block">\{f, g\} = \sum_{i=1}^{N} \left( \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right).</math> The Poisson brackets of the canonical coordinates are <math display="block">\begin{align} \{q_k,q_l\} &= \sum_{i=1}^{N} \left( \frac{\partial q_k}{\partial q_{i}} \frac{\partial q_l}{\partial p_{i}} - \frac{\partial q_k}{\partial p_i} \frac{\partial q_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( \delta_{ki} \cdot 0 - 0 \cdot \delta_{li}\right) = 0, \\ \{p_k,p_l\} &=\sum_{i=1}^{N} \left( \frac{\partial p_k}{\partial q_{i}} \frac{\partial p_l}{\partial p_{i}} - \frac{\partial p_k}{\partial p_i} \frac{\partial p_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( 0 \cdot \delta_{li} - \delta_{ki} \cdot 0\right) = 0, \\ \{q_k,p_l\} &= \sum_{i=1}^{N} \left( \frac{\partial q_k}{\partial q_{i}} \frac{\partial p_l}{\partial p_{i}} - \frac{\partial q_k}{\partial p_i} \frac{\partial p_l}{\partial q_i}\right) = \sum_{i=1}^{N} \left( \delta_{ki} \cdot \delta_{li} - 0 \cdot 0\right) = \delta_{kl}, \end{align}</math> where <math>\delta_{ij}</math> is the [[Kronecker delta]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)