Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson summation formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivations== We prove that,<ref name="Pinsky"/> if <math>s\in L^1(\mathbb R)</math>, then the (possibly divergent) Fourier series of <math>s_P(x)</math> is <math display="block">s_{_P}(x)\sim \sum_{k=-\infty}^\infty \frac{1}{P}S\left(\frac{k}{P}\right)e^{2\pi i k/P}.</math> When <math>s(x)</math> is a Schwartz function, this establishes equality in {{EquationNote|Eq.2}} of the previous section. First, the periodization <math>s_P(x)</math> converges in <math>L^1</math> norm to an <math>L^1([0,P])</math> function which is periodic on <math>\mathbb R</math>, and therefore integrable on any interval of length <math>P.</math> We must therefore show that the Fourier series coefficients of <math>s_{_P}(x)</math> are <math display="inline"> \frac{1}{P} S\left(\frac{k}{P}\right) </math> where <math display="inline"> S\left( f \right) </math> is the [[Fourier transform#Definition|Fourier transform]] of <math display="inline"> s\left( x \right) </math>. (Not <math display="inline"> S\left[ k \right] </math>, which is the Fourier coefficient of <math>s_{_P}(x)</math>.) Proceeding from [[Fourier series#Definition|the definition of the Fourier coefficients]] we have''':''' <math display="block">\begin{align} S[k]\ &\triangleq \ \frac{1}{P}\int_0^{P} s_{_P}(x)\cdot e^{-i 2\pi \frac{k}{P} x}\, dx\\ &=\ \frac{1}{P}\int_0^{P} \left(\sum_{n=-\infty}^{\infty} s(x + nP)\right) \cdot e^{-i 2\pi\frac{k}{P} x}\, dx\\ &=\ \frac{1}{P} \sum_{n=-\infty}^{\infty} \int_0^{P} s(x + nP)\cdot e^{-i 2\pi\frac{k}{P} x}\, dx, \end{align}</math> where the interchange of summation with integration is justified by [[dominated convergence]]. With a [[Integration by substitution|change of variables]] (<math>\tau = x + nP</math>), this becomes the following, completing the proof of {{EquationNote|Eq.2}}: <math display="block">\begin{align} S[k] = \frac{1}{P} \sum_{n=-\infty}^{\infty} \int_{nP}^{(n+1)P} s(\tau) \ e^{-i 2\pi \frac{k}{P} \tau} \ \underbrace{e^{i 2\pi k n}}_{1}\,d\tau \ =\ \frac{1}{P} \int_{-\infty}^{\infty} s(\tau) \ e^{-i 2\pi \frac{k}{P} \tau} d\tau \triangleq \frac{1}{P}\cdot S\left(\frac{k}{P}\right) \end{align}.</math> This proves {{EquationNote|Eq.2}} for <math>L^1</math> functions, in the sense that the right-hand side is the (possibly divergent) Fourier series of the left-hand side. Similarly, if <math>S(f)</math> is in <math>L^1(\mathbb R)</math>, a similar proof shows the corresponding version of {{EquationNote|Eq.3}}.<!-- The proof of Eq.3 may involve the Fourier transform of S(f), so the Fourier transform of the Fourier transform of s(x), and the Dirac delta function. --> Finally, if <math>s_{_P}(x)</math> has an [[absolutely convergent]] Fourier series, then {{EquationNote|Eq.2}} holds as an equality almost everywhere. This is the case, in particular, when <math>s(x)</math> is a Schwartz function. Similarly, {{EquationNote|Eq.3}} holds when <math>S(f)</math> is a Schwartz function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)