Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Notation and terminology == [[File:Polynomialdeg3.svg|The [[graph of a function|graph]] of a polynomial function of degree 3|thumb]] The ''x'' occurring in a polynomial is commonly called a ''variable'' or an ''indeterminate''. When the polynomial is considered as an expression, ''x'' is a fixed symbol which does not have any value (its value is "indeterminate"). However, when one considers the [[function (mathematics)|function]] defined by the polynomial, then ''x'' represents the argument of the function, and is therefore called a "variable". Many authors use these two words interchangeably. A polynomial ''P'' in the indeterminate ''x'' is commonly denoted either as ''P'' or as ''P''(''x''). Formally, the name of the polynomial is ''P'', not ''P''(''x''), but the use of the [[functional notation]] ''P''(''x'') dates from a time when the distinction between a polynomial and the associated function was unclear. Moreover, the functional notation is often useful for specifying, in a single phrase, a polynomial and its indeterminate. For example, "let ''P''(''x'') be a polynomial" is a shorthand for "let ''P'' be a polynomial in the indeterminate ''x''". On the other hand, when it is not necessary to emphasize the name of the indeterminate, many formulas are much simpler and easier to read if the name(s) of the indeterminate(s) do not appear at each occurrence of the polynomial. The ambiguity of having two notations for a single mathematical object may be formally resolved by considering the general meaning of the functional notation for polynomials. If ''a'' denotes a number, a variable, another polynomial, or, more generally, any expression, then ''P''(''a'') denotes, by convention, the result of substituting ''a'' for ''x'' in ''P''. Thus, the polynomial ''P'' defines the function <math display="block">a\mapsto P(a),</math> which is the ''polynomial function'' associated to ''P''. Frequently, when using this notation, one supposes that ''a'' is a number. However, one may use it over any domain where addition and multiplication are defined (that is, any [[ring (mathematics)|ring]]). In particular, if ''a'' is a polynomial then ''P''(''a'') is also a polynomial. More specifically, when ''a'' is the indeterminate ''x'', then the [[Image (mathematics)|image]] of ''x'' by this function is the polynomial ''P'' itself (substituting ''x'' for ''x'' does not change anything). In other words, <math display="block">P(x)=P,</math> which justifies formally the existence of two notations for the same polynomial.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)