Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Positive feedback
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Basic === [[File:Ideal feedback model.svg|thumb|A basic feedback system can be represented by this block diagram. In the diagram the + symbol is an adder and A and B are arbitrary [[causal system|causal]] functions.]] A simple feedback loop is shown in the diagram. If the loop gain AB is positive, then a condition of ''positive'' or ''regenerative'' feedback exists. If the functions A and B are linear and AB is smaller than unity, then the overall system gain from the input to output is finite but can be very large as AB approaches unity.<ref name=smith>Electronics circuits and devices second edition. Ralph J. Smith</ref> In that case, it can be shown that the overall or loop gain from input to output is: :<math>G_c = A/(1-AB)</math> When AB > 1, the system is unstable, so does not have a well-defined gain; the gain may be called infinite. Thus depending on the feedback, state changes can be convergent, or divergent. The result of positive feedback is to [[wikt:augment|augment]] changes, so that small perturbations may result in big changes. A system in equilibrium in which there is positive feedback to any change from its current state may be unstable, in which case the system is said to be in an [[unstable equilibrium]]. The magnitude of the forces that act to move such a system away from its equilibrium is an [[increasing function]] of the ''distance'' of the state from the equilibrium. Positive feedback does not necessarily imply instability of an equilibrium, for example stable ''on'' and ''off'' states may exist in positive-feedback architectures.<ref name="ReferenceA">{{cite journal|last1=Lopez-Caamal|first1=Fernando|last2=Middleton|first2=Richard H.|last3=Huber|first3=Heinrich|title=Equilibria and stability of a class of positive feedback loops|journal=Journal of Mathematical Biology|date=February 2014|pages=609β645|doi = 10.1007/s00285-013-0644-z|pmid=23358701|volume=68|issue=3|s2cid=2954380}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)