Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Potential evapotranspiration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Estimates of potential evaporation == === Thornthwaite equation (1948) === <math>PET = 16 \left(\frac{L}{12}\right) \left(\frac{N}{30}\right) \left(\frac{10T_d}{I}\right)^{\alpha} </math> Where <math>PET</math> is the estimated potential evapotranspiration (mm/month) <math>T_d</math> is the average daily temperature (degrees Celsius; if this is negative, use <math>0</math>) of the month being calculated <math>N</math> is the number of days in the month being calculated <math>L</math> is the average day length (hours) of the month being calculated <math>\alpha = (6.75 \times 10^{-7}) I^3 - (7.71 \times 10^{-5}) I^2 + (1.792 \times 10^{-2}) I + 0.49239</math> <math>I = \sum_{i=1}^{12} \left(\frac{T_{m_{i}}}{5}\right)^{1.514}</math> is a [[heat index]] which depends on the 12 monthly mean temperatures <math>T_{m_{i}}</math>.<ref name = thornthwaite48>{{Cite journal | doi = 10.2307/210739 | last = Thornthwaite | first = C. W. | title = An approach toward a rational classification of climate | journal = Geographical Review | volume = 38 | issue = 1 | pages = 55–94 | year = 1948 | jstor = 210739 | bibcode = <!-- do not add one, unless you manually verify it is exactly the same. Citation bot finds one for a reference to this --> }}</ref> Somewhat modified forms of this equation appear in later publications (1955 and 1957) by [[C. W. Thornthwaite]] and Mather.<ref name=black07>{{Cite journal |last = Black |first = Peter E. |title = Revisiting the Thornthwaite and Mather water balance |journal = Journal of the American Water Resources Association |volume = 43 |issue = 6 |pages = 1604–1605 |year = 2007 |doi = 10.1111/j.1752-1688.2007.00132.x |bibcode = 2007JAWRA..43.1604B }}</ref> === Penman equation (1948) === The '''[[Penman equation]]''' describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates. === FAO 56 Penman–Monteith equation (1998) === The '''[[Penman–Monteith equation]]''' refines weather based [[evapotranspiration]] (ET) estimates of vegetated land areas. This equation was then derived by FAO for retrieving the potential evapotranspiration ET<sub>0</sub>. <ref>{{cite book |last=Allen |first=R.G. |author2=Pereira, L.S. |author3=Raes, D. |author4= Smith, M. |title=Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements |url=http://www.fao.org/docrep/X0490E/x0490e00.HTM |accessdate=2007-10-08 |series=FAO Irrigation and drainage paper 56 |year=1998 |publisher=Food and Agriculture Organization of the United Nations |location=Rome, Italy |isbn=92-5-104219-5 }}</ref> It is widely regarded as one of the most accurate models, in terms of estimates. :<math> ET_0 = \frac{0.408 \Delta (R_n-G) + \frac{900}{T} \gamma u_2 \delta e }{\Delta + \gamma (1 + 0.34 u_2)} </math> :''ET''<sub>0</sub> = Potential evapotranspiration, Water volume evapotranspired (mm day<sup>−1</sup>) :Δ = Rate of change of saturation specific humidity with air temperature. (Pa K<sup>−1</sup>) :''R''<sub>n</sub> = Net [[irradiance]] (MJ m<sup>−2</sup> day<sup>−1</sup>), the external source of energy flux :''G'' = Ground heat flux (MJ m<sup>−2</sup> day<sup>−1</sup>), usually equivalent to zero on a day :''T'' = Air temperature at 2m height (K) :''u<sub>2</sub>'' = Wind speed at 2m height (m s<sup>−1</sup>) :δ''e'' = [[Vapor pressure]] deficit (kPa) :''γ'' = [[Psychrometric constant]] (''γ'' ≈ 66 Pa K<sup>−1</sup>) N.B.: The coefficients 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation [mm day<sup>−1</sup>] = 0.408 radiation [MJ m<sup>−2</sup> day<sup>−1</sup>]. === Priestley–Taylor equation === The '''Priestley–Taylor equation''' was developed as a substitute to the Penman–Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation (irradiance) observations are required. This is done by removing the aerodynamic terms from the Penman–Monteith equation and adding an empirically derived constant factor, <Math>\alpha</Math>. The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of potential evapotranspiration. However, observations revealed that actual evaporation was 1.26 times greater than potential evaporation, and therefore the equation for actual evaporation was found by taking potential evapotranspiration and multiplying it by <Math>\alpha</Math>. The assumption here is for vegetation with an abundant water supply (i.e. the plants have low moisture stress). Areas like arid regions with high moisture stress are estimated to have higher <Math>\alpha</Math> values.<ref>{{cite book |editor=M. E. Jensen, R. D. Burman & R. G. Allen |year=1990 |title=Evapotranspiration and Irrigation Water Requirement |series=ASCE Manuals and Reports on Engineering Practices |volume=70 |publisher=[[American Society of Civil Engineers]] |location=New York, NY |isbn=978-0-87262-763-5}}</ref> The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The lowest and turbulent part of the atmosphere, the [[atmospheric boundary layer]], is not a closed box, but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more easily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger than unity value of the Priestley-Taylor parameter <Math>\alpha</Math>. The proper equilibrium of the system has been derived and involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere.<ref>{{cite journal|last1=Culf|first1=A.|title=Equilibrium evaporation beneath a growing convective boundary layer|journal=Boundary-Layer Meteorology|date=1994|volume=70|issue=1–2|pages=34–49|doi=10.1007/BF00712522|bibcode=1994BoLMe..70...37C}}</ref><ref>{{cite journal|last1=van Heerwaarden|first1=C. C.|title=Interactions between dry-air entrainment, surface evaporation and convective boundary layer development|journal=Quarterly Journal of the Royal Meteorological Society|date=2009|volume=135|issue=642|pages=1277–1291|doi=10.1002/qj.431|display-authors=etal|bibcode=2009QJRMS.135.1277V}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)