Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-counting function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===More precise estimates=== In 1899, [[Charles Jean de la Vallée Poussin|de la Vallée Poussin]] proved that <ref>See also Theorem 23 of {{cite book |author = A. E. Ingham |author-link = Albert Ingham |title = The Distribution of Prime Numbers |date=2000 |publisher = Cambridge University Press |isbn=0-521-39789-8}}</ref> <math display=block>\pi(x) = \operatorname{li} (x) + O \left(x e^{-a\sqrt{\log x}}\right) \quad\text{as } x \to \infty</math> for some positive constant {{mvar|a}}. Here, {{math|''O''(...)}} is the [[big O notation|big {{mvar|O}} notation]]. More precise estimates of {{math|''π''(''x'')}} are now known. For example, in 2002, [[Kevin Ford (mathematician)|Kevin Ford]] proved that<ref name="Ford">{{cite journal |author = Kevin Ford |title=Vinogradov's Integral and Bounds for the Riemann Zeta Function |journal=Proc. London Math. Soc. |date=November 2002 |volume=85 |issue=3 |pages=565–633 |url=https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf |doi=10.1112/S0024611502013655 |arxiv=1910.08209 |s2cid=121144007 }}</ref> <math display=block>\pi(x) = \operatorname{li} (x) + O \left(x \exp \left( -0.2098(\log x)^{3/5} (\log \log x)^{-1/5} \right) \right).</math> Mossinghoff and [[Timothy Trudgian|Trudgian]] proved<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian | author2-link=Timothy Trudgian| title = Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function | journal = J. Number Theory | volume = 157 | year = 2015 | pages = 329–349 | arxiv = 1410.3926 | doi = 10.1016/J.JNT.2015.05.010| s2cid = 117968965 }}</ref> an explicit upper bound for the difference between {{math|''π''(''x'')}} and {{math|li(''x'')}}: <math display=block>\bigl| \pi(x) - \operatorname{li}(x) \bigr| \le 0.2593 \frac{x}{(\log x)^{3/4}} \exp \left( -\sqrt{ \frac{\log x}{6.315} } \right) \quad \text{for } x \ge 229.</math> For values of {{mvar|x}} that are not unreasonably large, {{math|li(''x'')}} is greater than {{math|''π''(''x'')}}. However, {{math|''π''(''x'') − li(''x'')}} is known to change sign infinitely many times. For a discussion of this, see [[Skewes' number]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)