Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-factor FFT algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Mapping based on CRT === For a coprime factorization {{tmath|1= \textstyle n = \prod_{d = 0}^{D - 1} n_d }}, we have the [[Chinese remainder theorem|Chinese remainder map]] <math>m \mapsto (m \bmod n_d)</math> from <math>\mathbb{Z}_{n}</math> to <math display="inline">\prod_{d = 0}^{D - 1} \mathbb{Z}_{n_d} </math> with <math display="inline">(m_d) \mapsto \sum_{d = 0}^{D - 1} e_d m_d</math> as its inverse where {{tmath|1= e_d }}'s are the [[central idempotent|central orthogonal idempotent elements]] with <math display="inline">\sum_{d = 0}^{D - 1} e_d = 1 \pmod{n}</math>. Choosing <math>\omega_{n_d} = \omega_n^{e_d}</math> (therefore, {{tmath|1= \prod_{d = 0}^{D - 1} \omega_{n_d} = \omega_n^{\sum_{d = 0}^{D - 1} e_d} = \omega_n }}), we rewrite <math>\text{DFT}_{\omega_n}</math> as follows: <math display="block">\hat{a}_j = \sum_{i = 0}^{n - 1} a_i \omega_n^{ij} = \sum_{i = 0}^{n - 1} a_i \left( \prod_{d = 0}^{D - 1} \omega_{n_d} \right)^{ij} = \sum_{i = 0}^{n - 1} a_i \prod_{d = 0}^{D - 1} \omega_{n_d}^{ (i \bmod n_d) (j \bmod n_d)} = \sum_{i_0 = 0}^{n_0 - 1} \cdots \sum_{i_{D - 1} = 0}^{n_{D - 1} - 1} a_{\sum_{d = 0}^{D - 1} e_d i_d} \prod_{d = 0}^{D - 1} \omega_{n_d}^{i_d (j \bmod n_d)} .</math> Finally, define <math>a_{i_0, \dots, i_{D - 1}} = a_{\sum_{d = 0}^{D - 1} i_d e_d}</math> and {{tmath|1= \hat{a}_{j_0, \dots, j_{D - 1} } = \hat{a}_{\sum_{d = 0}^{D - 1} j_d e_d} }}, we have <math display="block">\hat{a}_{j_0, \dots, j_{D - 1}} = \sum_{i_0 = 0}^{n_0 - 1} \cdots \sum_{i_{D - 1}=0}^{n_{D - 1} - 1} a_{i_0, \dots, i_{D - 1}} \prod_{d = 0}^{D - 1} \omega_{n_d}^{i_d j_d} .</math> Therefore, we have the multi-dimensional DFT, {{tmath|1= \textstyle \otimes_{d = 0}^{D - 1} \text{DFT}_{\omega_{n_d} } }}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)