Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projective line over a ring
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Over discrete rings === Consider {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} when ''n'' is a [[composite number]]. If ''p'' and ''q'' are distinct primes dividing ''n'', then {{angle bracket|''p''}} and {{angle bracket|''q''}} are [[maximal ideal]]s in {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} and by [[BΓ©zout's identity]] there are ''a'' and ''b'' in '''Z''' such that {{nowrap|1=''ap'' + ''bq'' = ''1''}}, so that {{nowrap|''U''[''p'', ''q'']}} is in {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} but it is not an image of an element under the canonical embedding. The whole of {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} is filled out by elements {{nowrap|''U''[''up'', ''vq'']}}, where {{nowrap|''u'' β ''v''}} and {{nowrap|''u'', ''v'' β ''A''<sup>Γ</sup>}}, ''A''<sup>Γ</sup> being the units of {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}}. The instances {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} are given here for ''n'' = 6, 10, and 12, where according to [[modular arithmetic]] the group of units of the ring is {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}6'''Z''')<sup>Γ</sup> = {{mset|1, 5}}}}, {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}10'''Z''')<sup>Γ</sup> = {{mset|1, 3, 7, 9}}}}, and {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}12'''Z''')<sup>Γ</sup> = {{mset|1, 5, 7, 11}}}} respectively. Modular arithmetic will confirm that, in each table, a given letter represents multiple points. In these tables a point {{nowrap|''U''[''m'', ''n'']}} is labeled by ''m'' in the row at the table bottom and ''n'' in the column at the left of the table. For instance, the [[point at infinity]] {{nowrap|1=A = ''U''[''v'', 0]}}, where ''v'' is a unit of the ring. {| |style="width: 20em;"| {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}6'''Z'''}} ! 5 | B || G || F || E || D || C |- ! 4 | || J || || K || || H |- ! 3 | || I || L || || L || I |- ! 2 | || H || || K || || J |- ! 1 | B || C || D || E || F || G |- ! 0 | || A || || || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 |} |style="width: 30em;"| {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}10'''Z'''}} ! 9 | B || K || J || I || H || G || F || E || D || C |- ! 8 | || P || || O || || Q || || M || || L |- ! 7 | B || E || H || K || D || G || J || C || F || I |- ! 6 | || O || || L || || Q || || P || || M |- ! 5 | || N || R || N || R || || R || N || R || N |- ! 4 | || M || || P || || Q || || L || || O |- ! 3 | B || I || F || C || J || G || D || K || H || E |- ! 2 | || L || || M || || Q || || O || || P |- ! 1 | B || C || D || E || F || G || H || I || J || K |- ! 0 | || A || || A || || || || A || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 |} | {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}12'''Z'''}} ! 11 | B || M || L || K || J || I || H || G || F || E || D || C |- ! 10 | || T || || U || || N || || T || || U || || N |- ! 9 | || S || V || || W || S || || O || W || || V || O |- ! 8 | || R || || X || || P || || R || || X || || P |- ! 7 | B || I || D || K || F || M || H || C || J || E || L || G |- ! 6 | || Q || || || || Q || || Q || || || || Q |- ! 5 | B || G || L || E || J || C || H || M || F || K || D || I |- ! 4 | || P || || X || || R || || P || || X || || R |- ! 3 | || O || V || || W || O || || S || W || || V || S |- ! 2 | || N || || U || || T || || N || || U || || T |- ! 1 | B || C || D || E || F || G || H || I || J || K || L || M |- ! 0 | || A || || || || A || || A || || || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !!10 !!11 |} |+ Tables showing the projective lines over rings {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} for ''n'' = 6, 10, 12. Ordered pairs marked with the same letter belong to the same point. |} The extra points can be associated with {{nowrap|'''Q''' β '''R''' β '''C'''}}, the rationals in the [[extended complex upper-half plane]]. The group of homographies on {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} is called a [[congruence subgroup|principal congruence subgroup]].<ref>{{citation |first1=Metod |last1=Saniga |first2=Michel |last2=Planat |first3=Maurice R. |last3=Kibler |first4=Petr |last4=Pracna |date=2007 |title=A classification of the projective lines over small rings |journal=[[Chaos, Solitons & Fractals]] |volume=33 |issue=4 |pages=1095β1102 |doi=10.1016/j.chaos.2007.01.008 |arxiv=math/0605301 |bibcode=2007CSF....33.1095S |mr=2318902 }}</ref> For the [[rational number]]s '''Q''', homogeneity of coordinates means that every element of P<sup>1</sup>('''Q''') may be represented by an element of P<sup>1</sup>('''Z'''). Similarly, a homography of P<sup>1</sup>('''Q''') corresponds to an element of the [[modular group]], the automorphisms of P<sup>1</sup>('''Z''').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)