Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Proplyd
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characteristics == [[File:Opo0113i.jpg|thumb|upright=1.5|Illustration of the dynamics of a proplyd, including an [[astrophysical jet]]]] [[File:177-341W collage Aru et al 2024.png|thumb|upright=1.5|Components of proplyd 177-341W in the Orion Nebula observed with [[Very Large Telescope|VLT]] [[Multi-unit spectroscopic explorer|MUSE]], showing an ionization front, protoplanetary disk, and tail<ref>{{cite journal |last1=Aru |first1=Mari-Liis |last2=Mauco |first2=Karina |last3=Manara |first3=Carlo F. |title=A tell-tale tracer for externally irradiated protoplanetary disks: Comparing the [C I] 8727 Γ line and ALMA observations in proplyds |journal=Astronomy & Astrophysics |volume=692 |pages=A137 |date=December 2024 |doi=10.1051/0004-6361/202451737 |url=https://www.aanda.org/articles/aa/full_html/2024/12/aa51737-24/aa51737-24.html|arxiv=2410.21018 }}</ref>]] In the Orion Nebula the proplyds observed are usually one of two types. Some proplyds [[Photoionization|glow]] around [[Luminosity|luminous]] stars, in cases where the disk is found close to the star, glowing from the star's luminosity. Other proplyds are found at a greater distance from the host star and instead show up as dark silhouettes due to the self-obscuration of cooler dust and gases from the disk itself. Some proplyds show signs of movement from [[solar irradiance]] shock waves pushing the proplyds. The Orion Nebula is approximately 1,500 [[light-years]] from the [[Sun]] with very active [[star formation]]. The Orion Nebula and the Sun are in the same [[Orion Arm|spiral arm]] of the [[Milky Way|Milky Way galaxy]].<ref>{{Cite web|url=https://www.spacetelescope.org/news/heic0917/|title=Born in beauty: proplyds in the Orion Nebula|website=www.spacetelescope.org}}</ref><ref>{{Cite web|url=https://www.spacetelescope.org/images/opo9424b/|title=Proplyds|website=www.spacetelescope.org}}</ref><ref>{{Cite APOD |date=22 December 2009 |title=Planetary Systems Now Forming in Orion |access-date=}}</ref><ref>{{Cite APOD |date=7 December 1996 |title=Planetary Systems Now Forming in Orion |access-date=}}</ref> A proplyd may form new [[planet]]s and [[planetesimal]] systems. Current models show that the [[metallicity]] of the star and proplyd, along with the correct planetary system temperature and distance from the star, are keys to planet and [[Nebular hypothesis|planetesimal formation]]. To date, the [[Solar System]], with 8 planets, 5 [[dwarf planet]]s and 5 planetesimal systems, is the largest [[planetary system]] found.<ref>{{Cite web|url=http://www.windows2universe.org/our_solar_system/solar_system.html|title=The Solar System: The Sun, Planets, Dwarf Planets, Moons, Asteroids, Comets, Meteors, Solar System Formation - Windows to the Universe}}</ref><ref>{{Cite web|url=https://www.universetoday.com/15451/the-solar-system/|title=Solar System Guide|first=Matt|last=Williams|date=September 5, 2015}}</ref><ref>{{Cite web|url=https://www.universetoday.com/33059/inner-planets/|title=The Inner Planets of Our Solar System|first=Matt|last=Williams|date=December 3, 2014}}</ref> Most proplyds develop into a system with no planetesimal systems, or into one very large planetesimal system.<ref>{{Cite web|url=https://sites.astro.caltech.edu/~jwang/Project4.html|title=Planet-Metallicity Correlation|website=sites.astro.caltech.edu}}</ref><ref>{{Cite journal|title=The Planet-Metallicity Correlation|first1=Debra A.|last1=Fischer|first2=Jeff|last2=Valenti|date=April 1, 2005|journal=The Astrophysical Journal|volume=622|issue=2 |pages=1102β1117|doi=10.1086/428383|bibcode=2005ApJ...622.1102F |s2cid=121872365 |doi-access=free}}</ref><ref>{{Cite journal|title=Revealing A Universal Planet-Metallicity Correlation For Planets of Different Sizes Around Solar-Type Stars|first1=Ji|last1=Wang|first2=Debra A.|last2=Fischer|date=January 1, 2015|journal=The Astronomical Journal|volume=149|issue=1|pages=14|doi=10.1088/0004-6256/149/1/14|arxiv=1310.7830|bibcode=2015AJ....149...14W |s2cid=118415186 }}</ref><ref>{{Cite web|url=http://www.astrobio.net/news-exclusive/when-stellar-metallicity-sparks-planet-formation/|work=Astrobiology Magazine |title=When Stellar Metallicity Sparks Planet Formation |first=Ray |last=Sanders |date=9 April 2012 |url-status=usurped |archive-url=https://web.archive.org/web/20201207080603/http://www.astrobio.net/news-exclusive/when-stellar-metallicity-sparks-planet-formation/ |archive-date=2020-12-07}}</ref><ref>From Lithium to Uranium (IAU S228): Elemental Tracers of Early Cosmic Evolution By International Astronomical Union. Symposium, by Vanessa Hill, Patrick Francois, [[Francesca Primas]], page 509-511, "the G star problem"</ref><ref>{{cite journal |last1=Kokubo |first1=E. |last2=Ida |first2=S. |title=Dynamics and accretion of planetesimals |journal=Progress of Theoretical and Experimental Physics |date=30 October 2012 |volume=2012 |issue=1 |pages=1A308β0 |doi=10.1093/ptep/pts032|doi-access=free |arxiv=1212.1558 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)