Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum phase transition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Quantum description== [[File:QuantumPhaseTransition.svg|thumb|Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions.]] Talking about ''quantum'' phase transitions means talking about transitions at ''T'' = 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or Néel temperature to 0 K. As a system in equilibrium at zero temperature is always in its lowest-energy state (or an equally weighted superposition if the lowest-energy is degenerate), a QPT cannot be explained by [[thermal fluctuations]]. Instead, [[quantum fluctuations]], arising from [[Heisenberg's uncertainty principle]], drive the loss of [[Order and disorder (physics)|order]] characteristic of a QPT. The QPT occurs at the [[quantum critical point]] (QCP), where quantum fluctuations driving the transition diverge and become scale invariant in space and time. Although absolute zero is not physically realizable, characteristics of the transition can be detected in the system's low-temperature behavior near the critical point. At nonzero temperatures, classical fluctuations with an energy scale of ''k<sub>B</sub>T'' compete with the quantum fluctuations of energy scale ''ħω.'' Here ''ω'' is the characteristic frequency of the quantum oscillation and is inversely proportional to the correlation time. Quantum fluctuations dominate the system's behavior in the region where ''ħω'' > ''k<sub>B</sub>T'', known as the quantum critical region. This quantum critical behavior manifests itself in unconventional and unexpected physical behavior like novel non Fermi liquid phases. From a theoretical point of view, a phase diagram like the one shown on the right is expected: the QPT separates an ordered from a disordered phase (often, the low temperature disordered phase is referred to as 'quantum' disordered). At high enough temperatures, the system is disordered and purely classical. Around the classical phase transition, the system is governed by classical thermal fluctuations (light blue area). This region becomes narrower with decreasing energies and converges towards the quantum critical point (QCP). Experimentally, the 'quantum critical' phase, which is still governed by quantum fluctuations, is the most interesting one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)