Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radon transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Let <math>f(\textbf x) = f(x,y)</math> be a function that satisfies the three regularity conditions:{{sfn|Radon|1986}} # <math>f(\textbf x)</math> is continuous; # the double integral <math>\iint\dfrac{\vert f(\textbf x)\vert }{\sqrt{x^2+y^2}} \, dx \, dy</math>, extending over the whole plane, converges; # for any arbitrary point <math>(x,y)</math> on the plane it holds that <math>\lim_{r\to\infty}\int_0^{2\pi} f(x+r\cos\varphi,y+r\sin\varphi) \, d\varphi=0.</math> The Radon transform, <math>Rf</math>, is a function defined on the space of straight lines <math>L \subset \mathbb R^2</math> by the [[Line integral#Definition|line integral]] along each such line as: <math display="block">Rf(L) = \int_L f(\mathbf{x}) \vert d\mathbf{x}\vert .</math>Concretely, the parametrization of any straight line ''<math>L</math>'' with respect to arc length <math>z</math> can always be written:<math display="block">(x(z),y(z)) = \Big( (z\sin\alpha+s\cos\alpha), (-z \cos\alpha + s\sin\alpha) \Big) \,</math>where <math>s</math> is the distance of <math>L </math> from the origin and <math>\alpha</math> is the angle the normal vector to ''<math>L</math>'' makes with the <math>X</math>-axis. It follows that the quantities <math>(\alpha,s)</math> can be considered as coordinates on the space of all lines in <math>\mathbb R^2</math>, and the Radon transform can be expressed in these coordinates by: <math display="block">\begin{align} Rf(\alpha,s) &= \int_{-\infty}^\infty f(x(z),y(z)) \, dz\\ &= \int_{-\infty}^\infty f\big( (z\sin\alpha+s\cos\alpha), (-z\cos\alpha+s\sin\alpha) \big) \, dz. \end{align}</math>More generally, in the <math>n</math>-dimensional [[Euclidean space]] <math>\mathbb R^n</math>, the Radon transform of a function <math>f</math> satisfying the regularity conditions is a function ''<math>Rf</math>'' on the space <math>\Sigma_n</math> of all [[hyperplane]]s in <math>\mathbb R^n</math>. It is defined by: {{multiple image | align = left | direction = horizontal | image1 = SheppLogan_Phantom.svg | caption1 = [[Shepp-Logan Phantom|Shepp Logan phantom]] | image2 = Shepp logan radon.png | caption2 = Radon transform | image3 = Shepp logan iradon.png | caption3 = Inverse Radon transform | total_width = 400 }} <math display="block">Rf(\xi) = \int_\xi f(\mathbf{x})\, d\sigma(\mathbf{x}), \quad \forall \xi \in \Sigma_n</math>where the integral is taken with respect to the natural [[hypersurface]] [[measure (mathematics)|measure]], <math>d \sigma</math> (generalizing the <math>\vert d\mathbf{x}\vert</math> term from the <math>2</math>-dimensional case). Observe that any element of <math>\Sigma_n</math> is characterized as the solution locus of an equation <math>\mathbf{x}\cdot\alpha = s</math>, where <math>\alpha \in S^{n-1}</math> is a [[unit vector]] and <math>s \in \mathbb R</math>. Thus the <math>n</math>-dimensional Radon transform may be rewritten as a function on <math>S^{n-1} \times \mathbb R</math> via: <math display="block">Rf(\alpha,s) = \int_{\mathbf{x}\cdot\alpha = s} f(\mathbf{x})\, d\sigma(\mathbf{x}).</math>It is also possible to generalize the Radon transform still further by integrating instead over <math>k</math>-dimensional affine subspaces of <math>\mathbb R^n</math>. The [[X-ray transform]] is the most widely used special case of this construction, and is obtained by integrating over straight lines.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)