Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Random variable
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Standard case=== In many cases, <math>X</math> is [[Real number|real-valued]], i.e. <math>E = \mathbb{R}</math>. In some contexts, the term [[random element]] (see [[#Extensions|extensions]]) is used to denote a random variable not of this form. {{Anchor|Discrete random variable}}When the [[Image (mathematics)|image]] (or range) of <math>X</math> is finite or [[countable set|countably]] infinite, the random variable is called a '''discrete random variable'''<ref name="Yates">{{cite book | last1 = Yates | first1 = Daniel S. | last2 = Moore | first2 = David S | last3 = Starnes | first3 = Daren S. | year = 2003 | title = The Practice of Statistics | edition = 2nd | publisher = [[W. H. Freeman and Company|Freeman]] | location = New York | url = http://bcs.whfreeman.com/yates2e/ | isbn = 978-0-7167-4773-4 | url-status = dead | archive-url = https://web.archive.org/web/20050209001108/http://bcs.whfreeman.com/yates2e/ | archive-date = 2005-02-09 }}</ref>{{rp|399}} and its distribution is a [[discrete probability distribution]], i.e. can be described by a [[probability mass function]] that assigns a probability to each value in the image of <math>X</math>. If the image is uncountably infinite (usually an [[Interval (mathematics)|interval]]) then <math>X</math> is called a '''continuous random variable'''.<ref>{{Cite web|title=Random Variables|url=http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm|access-date=2020-08-21|website=www.stat.yale.edu}}</ref><ref>{{Cite journal|last1=Dekking|first1=Frederik Michel|last2=Kraaikamp|first2=Cornelis|last3=Lopuhaä|first3=Hendrik Paul|last4=Meester|first4=Ludolf Erwin|date=2005|title=A Modern Introduction to Probability and Statistics|url=https://doi.org/10.1007/1-84628-168-7|journal=Springer Texts in Statistics|language=en-gb|doi=10.1007/1-84628-168-7|isbn=978-1-85233-896-1|issn=1431-875X|url-access=subscription}}</ref> In the special case that it is [[absolutely continuous]], its distribution can be described by a [[probability density function]], which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous.<ref>{{cite book|author1=L. Castañeda |author2=V. Arunachalam |author3=S. Dharmaraja |name-list-style=amp |title = Introduction to Probability and Stochastic Processes with Applications | year = 2012 | publisher= Wiley | page = 67 | url=https://books.google.com/books?id=zxXRn-Qmtk8C&pg=PA67 |isbn=9781118344941 }}</ref> Any random variable can be described by its [[cumulative distribution function]], which describes the probability that the random variable will be less than or equal to a certain value.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)