Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rational function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Complex rational functions=== In [[complex analysis]], a rational function :<math>f(z) = \frac{P(z)}{Q(z)}</math> is the ratio of two polynomials with complex coefficients, where {{math|''Q''}} is not the zero polynomial and {{math|''P''}} and {{math|''Q''}} have no common factor (this avoids {{math|''f''}} taking the indeterminate value 0/0). The domain of {{mvar|f}} is the set of complex numbers such that <math>Q(z)\ne 0</math>. Every rational function can be naturally extended to a function whose domain and range are the whole [[Riemann sphere]] ([[complex projective line]]). A complex rational function with degree one is a [[Möbius transformation]]. Rational functions are representative examples of [[meromorphic function]]s.<ref>{{cite book | last1=Ablowitz | first1=Mark J. | author1-link = Mark Ablowitz | last2=Fokas | first2=Athanassios S. | author2-link=Athanassios Fokas | title=Complex Variables | publisher=Cambridge University Press | date=2003 | isbn=978-0-521-53429-1|page=150}}</ref> Iteration of rational functions on the [[Riemann sphere]] (i.e. a [[rational mapping]]) creates [[discrete dynamical system]]s.<ref>{{cite journal | last=Blanchard | first=Paul | title=Complex analytic dynamics on the Riemann sphere | journal=Bulletin of the American Mathematical Society | volume=11 | issue=1 | date=1984 | issn=0273-0979 | doi=10.1090/S0273-0979-1984-15240-6 | doi-access=free | pages=85–141|url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-11/issue-1/Complex-analytic-dynamics-on-the-Riemann-sphere/bams/1183551835.full}} p. 87</ref> <gallery caption = "[[Julia set]]s for rational maps "> Julia set f(z)=1 over az5+z3+bz.png| <math>\frac{1}{ az^5+z^3+bz}</math> Julia set f(z)=1 over z3+z*(-3-3*I).png|<math>\frac{1}{z^3+z(-3-3i)}</math> Julia set for f(z)=(z2+a) over (z2+b) a=-0.2+0.7i , b=0.917.png|<math>\frac{z^2 - 0.2 + 0.7i}{z^2 + 0.917}</math> Julia set for f(z)=z2 over (z9-z+0.025).png| <math>\frac{z^2}{z^9 - z + 0.025}</math> </gallery>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)