Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rayleigh distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to random vector length== Consider the two-dimensional vector <math> Y = (U,V) </math> which has components that are [[bivariate normal distribution|bivariate normally distributed]], centered at zero, with equal variances <math>\sigma^2</math>, and independent. Then <math>U</math> and <math>V</math> have density functions :<math>f_U(x; \sigma) = f_V(x;\sigma) = \frac{e^{-x^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}.</math> Let <math>X</math> be the length of <math>Y</math>. That is, <math>X = \sqrt{U^2 + V^2}.</math> Then <math>X</math> has cumulative distribution function :<math>F_X(x; \sigma) = \iint_{D_x} f_U(u;\sigma) f_V(v;\sigma) \,dA,</math> where <math>D_x</math> is the disk :<math>D_x = \left\{(u,v) : \sqrt{u^2 + v^2} \leq x\right\}.</math> Writing the [[multiple integral|double integral]] in [[polar coordinate system|polar coordinates]], it becomes :<math>F_X(x; \sigma) = \frac{1}{2\pi\sigma^2} \int_0^{2\pi} \int_0^x r e^{-r^2/(2\sigma^2)} \,dr\,d\theta = \frac 1 {\sigma^2} \int_0^x r e^{-r^2/(2\sigma^2)} \,dr. </math> Finally, the probability density function for <math>X</math> is the derivative of its cumulative distribution function, which by the [[fundamental theorem of calculus]] is :<math>f_X(x;\sigma) = \frac d {dx} F_X(x;\sigma) = \frac x {\sigma^2} e^{-x^2/(2\sigma^2)},</math> which is the Rayleigh distribution. It is straightforward to generalize to vectors of dimension other than 2. There are also generalizations when the components have [[unequal variance]] or correlations ([[Hoyt distribution]]), or when the vector ''Y'' follows a [[multivariate t-distribution|bivariate Student ''t''-distribution]] (see also: [[Hotelling's T-squared distribution]]).<ref>{{cite journal|last=Röver|first=C.|title=Student-t based filter for robust signal detection|journal=Physical Review D|volume=84|issue=12|year=2011|pages=122004|doi=10.1103/physrevd.84.122004|arxiv=1109.0442|bibcode=2011PhRvD..84l2004R}}</ref> {{Collapse top|title=Generalization to bivariate Student's t-distribution}} {{anchor|Student's}} Suppose <math>Y</math> is a random vector with components <math>u,v</math> that follows a [[multivariate t-distribution]]. If the components both have mean zero, equal variance and are independent, the bivariate Student's-t distribution takes the form: :<math>f(u,v) = {1\over{2\pi\sigma^{2}}}\left( 1 + {u^{2}+v^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1}</math> Let <math>R = \sqrt{U^{2}+V^{2}}</math> be the magnitude of <math>Y</math>. Then the [[cumulative distribution function]] (CDF) of the magnitude is: :<math> F(r) = {1\over{2\pi\sigma^{2}}}\iint_{D_{r}} \left( 1 + {u^{2}+v^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1}du \; dv </math> where <math>D_{r}</math> is the disk defined by: :<math> D_{r} = \left\{ (u,v) : \sqrt{u^{2}+v^{2}} \leq r \right\} </math> Converting to [[polar coordinates]] leads to the CDF becoming: :<math> \begin{aligned} F(r) &= {1\over{2\pi\sigma^{2}}}\int_{0}^{r}\int_{0}^{2\pi} \rho\left( 1 + {\rho^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1}d\theta \; d\rho \\ &= {1\over{\sigma^{2}}}\int_{0}^{r}\rho\left( 1 + {\rho^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1} d\rho \\ &= 1-\left( 1 + {r^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2} \end{aligned} </math> Finally, the [[probability density function]] (PDF) of the magnitude may be derived: :<math> f(r) = F'(r) = {r\over{\sigma^{2}}} \left( 1 + {r^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1} </math> In the limit as <math> \nu \rightarrow \infty </math>, the Rayleigh distribution is recovered because: :<math> \lim_{\nu\rightarrow \infty} \left( 1 + {r^{2}\over{\nu \sigma^{2}}} \right)^{-\nu/2-1} = e^{-r^{2}/2\sigma^{2}} </math> {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)