Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rayleigh quotient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Special case of covariance matrices== An empirical [[covariance matrix]] <math>M</math> can be represented as the product <math>A'A</math> of the [[data matrix (multivariate statistics)|data matrix]] <math>A</math> pre-multiplied by its transpose <math>A'</math>. Being a positive semi-definite matrix, <math>M</math> has non-negative eigenvalues, and orthogonal (or orthogonalisable) eigenvectors, which can be demonstrated as follows. Firstly, that the eigenvalues <math>\lambda_i</math> are non-negative: <math display="block">\begin{align} &M v_i = A' A v_i = \lambda_i v_i \\ \Rightarrow{}& v_i' A' A v_i = v_i' \lambda_i v_i \\ \Rightarrow{}& \left\| A v_i \right\|^2 = \lambda_i \left\| v_i \right\|^2 \\ \Rightarrow{}& \lambda_i = \frac{\left\| A v_i \right\|^2}{\left\| v_i \right\|^2} \geq 0. \end{align}</math> Secondly, that the eigenvectors <math>v_i</math> are orthogonal to one another: <math display="block">\begin{align} &M v_i = \lambda _i v_i \\ \Rightarrow{}& v_j' M v_i = v_j' \lambda _i v_i \\ \Rightarrow{}& \left (M v_j \right )' v_i = \lambda_j v_j' v_i \\ \Rightarrow{}& \lambda_j v_j ' v_i = \lambda _i v_j' v_i \\ \Rightarrow{}& \left (\lambda_j - \lambda_i \right ) v_j ' v_i = 0 \\ \Rightarrow{}& v_j ' v_i = 0 \end{align}</math> if the eigenvalues are different β in the case of multiplicity, the basis can be orthogonalized. To now establish that the Rayleigh quotient is maximized by the eigenvector with the largest eigenvalue, consider decomposing an arbitrary vector <math>x</math> on the basis of the eigenvectors <math>v_i</math>: <math display="block">x = \sum _{i=1} ^n \alpha _i v_i,</math> where <math display="block">\alpha_i = \frac{x' v_i}{v_i' v_i} = \frac{\langle x,v_i\rangle}{\left\| v_i \right\| ^2}</math> is the coordinate of <math>x</math> orthogonally projected onto <math>v_i</math>. Therefore, we have: <math display="block">\begin{align} R(M,x) &= \frac{x' A' A x}{x' x} \\ &= \frac{ \Bigl( \sum _{j=1} ^n \alpha _j v_j \Bigr)' \left ( A' A \right ) \Bigl(\sum _{i=1} ^n \alpha _i v_i \Bigr)}{ \Bigl( \sum _{j=1} ^n \alpha _j v_j \Bigr)' \Bigl( \sum _{i=1} ^n \alpha _i v_i \Bigr)} \\ &= \frac{ \Bigl( \sum _{j=1} ^n \alpha _j v_j \Bigr)'\Bigl(\sum _{i=1} ^n \alpha _i (A' A) v_i \Bigr)}{ \Bigl( \sum _{i=1}^n \alpha _i^2 {v_i}'{v_i} \Bigr)} \\ &= \frac{ \Bigl( \sum _{j=1} ^n \alpha _j v_j \Bigr)'\Bigl(\sum _{i=1} ^n \alpha _i \lambda_i v_i \Bigr)}{ \Bigl( \sum _{i=1}^n \alpha _i^2 \|{v_i}\|^2 \Bigr)} \end{align}</math> which, by [[orthonormality]] of the eigenvectors, becomes: <math display="block">\begin{align} R(M,x) &= \frac{\sum _{i=1} ^n \alpha_i^2 \lambda _i}{\sum _{i=1} ^n \alpha_i^2} \\ &= \sum_{i=1}^n \lambda_i \frac{(x'v_i)^2}{ (x'x)( v_i' v_i)^2} \\ &= \sum_{i=1}^n \lambda_i \frac{(x'v_i)^2}{ (x'x)} \end{align}</math> The last representation establishes that the Rayleigh quotient is the sum of the squared cosines of the angles formed by the vector <math>x</math> and each eigenvector <math>v_i</math>, weighted by corresponding eigenvalues. If a vector <math>x</math> maximizes <math>R(M,x)</math>, then any non-zero scalar multiple <math>kx</math> also maximizes <math>R</math>, so the problem can be reduced to the [[Lagrange multipliers|Lagrange problem]] of maximizing <math display="inline">\sum _{i=1}^n \alpha_i^2 \lambda _i</math> under the constraint that <math display="inline">\sum _{i=1} ^n \alpha _i ^2 = 1</math>. Define: <math>\beta_i = \alpha_i^2</math>. This then becomes a [[linear program]], which always attains its maximum at one of the corners of the domain. A maximum point will have <math>\alpha_1 = \pm 1</math> and <math>\alpha _i = 0</math> for all <math>i > 1</math> (when the eigenvalues are ordered by decreasing magnitude). Thus, the Rayleigh quotient is maximized by the eigenvector with the largest eigenvalue. === Formulation using Lagrange multipliers === Alternatively, this result can be arrived at by the method of [[Lagrange multipliers]]. The first part is to show that the quotient is constant under scaling <math>x \to cx</math>, where <math>c</math> is a scalar <math display="block">R(M,cx) = \frac {(cx)^{*} M cx} {(cx)^{*} cx} = \frac {c^{*} c} {c^{*} c} \frac {x^{*} M x} {x^{*} x} = R(M,x).</math> Because of this invariance, it is sufficient to study the special case <math>\|x\|^2 = x^Tx = 1</math>. The problem is then to find the [[critical point (mathematics)|critical points]] of the function <math display="block">R(M,x) = x^\mathsf{T} M x ,</math> subject to the constraint <math>\|x\|^2 = x^Tx = 1.</math> In other words, it is to find the critical points of <math display="block">\mathcal{L}(x) = x^\mathsf{T} M x -\lambda \left (x^\mathsf{T} x - 1 \right), </math> where <math>\lambda</math> is a Lagrange multiplier. The stationary points of <math>\mathcal{L}(x)</math> occur at <math display="block">\begin{align} &\frac{d\mathcal{L}(x)}{dx} = 0 \\ \Rightarrow{}& 2x^\mathsf{T}M - 2\lambda x^\mathsf{T} = 0 \\ \Rightarrow{}& 2Mx - 2\lambda x = 0 \text{ (taking the transpose of both sides and noting that }M\text{ is Hermitian)}\\ \Rightarrow{}& M x = \lambda x \end{align} </math> and <math display="block"> \therefore R(M,x) = \frac{x^\mathsf{T} M x}{x^\mathsf{T} x} = \lambda \frac{x^\mathsf{T}x}{x^\mathsf{T} x} = \lambda.</math> Therefore, the eigenvectors <math>x_1, \ldots, x_n</math> of <math>M</math> are the critical points of the Rayleigh quotient and their corresponding eigenvalues <math>\lambda_1, \ldots, \lambda_n</math> are the stationary values of <math>\mathcal{L}</math>. This property is the basis for [[principal components analysis]] and [[canonical correlation]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)