Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relevance logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Axioms== The early developments in relevance logic focused on the stronger systems. The development of the Routley–Meyer semantics brought out a range of weaker logics. The weakest of these logics is the relevance logic B. It is axiomatized with the following axioms and rules. # <math>A\to A</math> # <math>A\land B\to A</math> # <math>A\land B\to B</math> # <math>(A\to B)\land(A\to C)\to (A\to B\land C)</math> # <math>A\to A\lor B</math> # <math>B\to A\lor B</math> # <math>(A\to C)\land(B\to C)\to (A\lor B\to C)</math> # <math>A\land(B\lor C)\to (A\land B)\lor(A\land C)</math> # <math>\lnot\lnot A\to A</math> The rules are the following. # <math>A, A\to B\vdash B</math> # <math>A, B\vdash A\land B</math> # <math>A\to B\vdash (C\to A)\to(C\to B)</math> # <math>A\to B\vdash (B\to C)\to(A\to C)</math> # <math>A\to \lnot B\vdash B\to\lnot A</math> Stronger logics can be obtained by adding any of the following axioms. # <math>(A\to B)\to (\lnot B\to\lnot A)</math> # <math>(A\to B)\land(B\to C)\to (A\to C)</math> # <math>(A\to B)\to((B\to C)\to(A\to C))</math> # <math>(A\to B)\to((C\to A)\to(C\to B))</math> # <math>(A\to(A\to B))\to(A\to B)</math> # <math>(A\land (A\to B))\to B</math> # <math>(A\to\lnot A)\to\lnot A</math> # <math>(A\to (B\to C))\to(B\to(A\to C))</math> # <math>A\to((A\to B)\to B)</math> # <math>((A\to A)\to B)\to B</math> # <math>A\lor\lnot A</math> # <math>A\to(A\to A)</math> There are some notable logics stronger than B that can be obtained by adding axioms to B as follows. * For DW, add axiom 1. * For DJ, add axioms 1, 2. * For TW, add axioms 1, 2, 3, 4. * For RW, add axioms 1, 2, 3, 4, 8, 9. * For T, add axioms 1, 2, 3, 4, 5, 6, 7, 11. * For R, add axioms 1-11. * For E, add axioms 1-7, 10, 11, <math>((A\to A)\land(B\to B)\to C)\to C</math>, and <math>\Box A\land \Box B\to \Box (A\land B)</math>, where <math>\Box A</math> is defined as <math>(A\to A)\to A</math>. * For RM, add all the additional axioms.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)