Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reversible reaction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Reaction kinetics == For the reversible reaction AβB, the forward step AβB has a rate constant <math>k_1</math> and the backwards step BβA has a rate constant <math>k_{-1}</math>. The concentration of A obeys the following differential equation: {{NumBlk|:|<math>\frac{d[A]}{dt}=-k_\text{1}[A]+k_\text{-1}[B]</math>.|{{EquationRef|1}}}} If we consider that the concentration of product B at anytime is equal to the concentration of reactants at time zero minus the concentration of reactants at time <math>t</math>, we can set up the following equation: {{NumBlk|:|<math>[B]=[A]_\text{0}-[A]</math>.|{{EquationRef|2}}}} Combining {{EquationNote|1}} and {{EquationNote|2}}, we can write :<math>\frac{d[A]}{dt}=-k_\text{1}[A]+k_\text{-1}([A]_\text{0}-[A])</math>. Separation of variables is possible and using an initial value <math>[A](t=0) = [A]_0</math>, we obtain: :<math>C=\frac{{-\ln}(-k_\text{1}[A]_\text{0})}{k_\text{1}+k_\text{-1}}</math> and after some algebra we arrive at the final kinetic expression: :<math>[A]=\frac{k_\text{-1}[A]_\text{0}}{k_\text{1}+k_\text{-1}}+\frac{k_\text{1}[A]_\text{0}}{k_\text{1}+k_\text{-1}}\exp{{(-k_\text{1}+k_\text{-1}})t}</math>. The concentration of A and B at infinite time has a behavior as follows: :<math>[A]_\infty=\frac{k_\text{-1}[A]_\text{0}}{k_\text{1}+k_\text{-1}}</math> :<math>[B]_\infty=[A]_\text{0}-[A]_\infty=[A]_\text{0}-\frac{k_\text{-1}[A]_\text{0}}{k_\text{1} +k_\text{-1}}</math> :<math>\frac{[B]_\infty}{[A]_\infty}=\frac{k_\text{1}}{k_\text{-1}}=K_\text{eq}</math> :<math>[A]=[A]_\infty+([A]_\text{0}-[A]_\infty)\exp(-k_\text{1}+k_\text{-1})t</math> Thus, the formula can be linearized in order to determine <math>k_1+k_{-1}</math>: :<math>\ln([A]-[A]_\infty)=\ln([A]_\text{0}-[A]_\infty)-(k_\text{1}+k_\text{-1})t</math> To find the individual constants <math>k_1</math> and <math>k_{-1}</math>, the following formula is required: :<math>K_\text{eq}=\frac{k_\text{1}}{k_\text{-1}}=\frac{[B]_\infty}{[A]_\infty}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)