Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rhenium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Characteristics== Rhenium is a silvery-white metal with one of the highest [[melting point]]s of all elements, exceeded by only [[tungsten]]. (At standard pressure [[carbon]] sublimes rather than melts, though its sublimation point is comparable to the melting points of tungsten and rhenium.) It also has one of the highest [[boiling points]] of all elements, and the highest among stable elements. It is also one of the densest, exceeded only by [[platinum]], [[iridium]] and [[osmium]]. Rhenium has a hexagonal close-packed crystal structure. Its usual commercial form is a powder, but this element can be consolidated by pressing and [[sintering]] in a vacuum or [[hydrogen]] atmosphere. This procedure yields a compact solid having a density above 90% of the density of the metal. When [[Annealing (metallurgy)|annealed]] this metal is very ductile and can be bent, coiled, or rolled.<ref name="CRC">{{cite book| first=C. R.| last=Hammond| chapter=The Elements| title=Handbook of Chemistry and Physics| edition=81st| publisher=CRC press| isbn=978-0-8493-0485-9| date=2004| chapter-url-access=registration| chapter-url=https://archive.org/details/crchandbookofche81lide}}</ref> Rhenium-molybdenum [[alloy]]s are [[Superconductivity|superconductive]] at 10 [[Kelvin|K]]; tungsten-rhenium alloys are also superconductive<ref>{{cite journal|title=Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System|journal=Soviet Physics JETP|volume=27|page=13|date=1968|bibcode=1968JETP...27...13N|last=Neshpor|first=V. S.|author2=Novikov, V. I.|author3=Noskin, V. A.|author4=Shalyt, S. S.}}</ref> around 4–8 K, depending on the alloy. Rhenium metal superconducts at {{val|1.697|0.006|u=K}}.<ref>{{cite book | editor= Haynes, William M. | date = 2011 | title = CRC Handbook of Chemistry and Physics | edition = 92nd|page=12.60 | publisher = [[CRC Press]] | isbn = 978-1439855119| title-link = CRC Handbook of Chemistry and Physics }}</ref><ref>{{cite web|url=http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0622881 |archive-url=https://web.archive.org/web/20170206104641/http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0622881 |url-status=dead |archive-date=2017-02-06 |title=The Properties of Superconducting Mo-Re Alloys |author=Daunt, J. G. |author2=Lerner, E. |publisher=[[Defense Technical Information Center]] }}</ref> In bulk form and at room temperature and atmospheric pressure, the element resists alkalis, [[sulfuric acid]], [[hydrochloric acid]], [[nitric acid]], and [[aqua regia]]. It will however, react with nitric acid upon heating.<ref>{{cite web | url=https://www.youtube.com/watch?v=Duk20wEVgJQ | title=Rhenium - A METAL WITHOUT WHICH THERE WOULdn't BE GASOLINE! | website=[[YouTube]] | date=July 2018 }}</ref> ===Isotopes=== {{Main|Isotopes of rhenium}} Rhenium has one [[Stable nuclide|stable]] isotope, rhenium-185, which nevertheless occurs in minority abundance, a situation found only in two other elements ([[indium]] and [[tellurium]]). Naturally occurring rhenium is only 37.4% <sup>185</sup>Re, and 62.6% <sup>187</sup>Re, which is [[Radionuclide|unstable]] but has a very long [[half-life]] (~10<sup>10</sup> years). A kilogram of natural rhenium emits 1.07 [[Becquerel|MBq]] of radiation due to the presence of this isotope. This lifetime can be greatly affected by the charge state of the rhenium atom.<ref>{{cite web|work=math.ucr.edu|url=http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/decay_rates.html|title=How to Change Nuclear Decay Rates|date=1993|first=Bill|last=Johnson|access-date=2009-02-21}}</ref><ref name="Bosch1996">{{cite journal|last1=Bosch|first1=F.|last2=Faestermann|first2=T.|last3=Friese|first3=J.|last4=Heine|first4=F.|last5=Kienle|first5=P.|last6=Wefers|first6=E.|last7=Zeitelhack|first7=K.|last8=Beckert|first8=K.|last9=Franzke|first9=B.|last10=Klepper|first10=O.|last11=Kozhuharov|first11=C.|last12=Menzel|first12=G.|last13=Moshammer|first13=R.|last14=Nolden|first14=F.|last15=Reich|first15=H.|last16=Schlitt|first16=B.|last17=Steck|first17=M.|last18=Stöhlker|first18=T.|last19=Winkler|first19=T.|last20=Takahashi|first20=K.|display-authors=3|title=Observation of bound-state ''β''<sup>−</sup> decay of fully ionized <sup>187</sup>Re: <sup>187</sup>Re-<sup>187</sup>Os Cosmochronometry|date=1996|journal=[[Physical Review Letters]]|volume=77|issue=26|pages=5190–5193|doi=10.1103/PhysRevLett.77.5190|bibcode=1996PhRvL..77.5190B|pmid=10062738}}</ref> The [[beta decay]] of <sup>187</sup>Re is used for [[rhenium–osmium dating]] of ores. The available energy for this beta decay (2.6 [[keV]]) is the second lowest known among all [[radionuclide]]s, only behind the decay from <sup>115</sup>In to excited <sup>115</sup>Sn* (0.147 keV).<ref>{{cite journal | last1=Belli | first1=P. | last2=Bernabei | first2=R. | last3=Danevich | first3=F. A. | last4=Incicchitti | first4=A. | last5=Tretyak | first5=V. I. | title=Experimental searches for rare alpha and beta decays | journal=The European Physical Journal A | publisher=Springer Science and Business Media LLC | volume=55 | issue=8 | year=2019 | page=140 | issn=1434-6001 | doi=10.1140/epja/i2019-12823-2| arxiv=1908.11458 | bibcode=2019EPJA...55..140B }}</ref> The isotope rhenium-186m is notable as being one of the longest lived [[metastable isotope]]s with a half-life of around 200,000 years. There are 33 other unstable isotopes that have been recognized, ranging from <sup>160</sup>Re to <sup>194</sup>Re, the longest-lived of which is <sup>183</sup>Re with a half-life of 70 days.{{NUBASE2016|ref}} ===Compounds=== {{main|Rhenium compounds}} Rhenium compounds are known for all the [[oxidation states]] between −3 and +7 except −2. The oxidation states +7, +4, and +3 are the most common.<ref>{{cite book |last1=Housecroft |first1=Catherine E. |last2=Sharpe |first2=Alan G. |title=Inorganic Chemistry |date=2018|publisher=Pearson Prentice-Hal |isbn=978-1292-13414-7 |page=829 |edition=5th}}</ref> Rhenium is most available commercially as salts of [[perrhenate]], including [[sodium perrhenate|sodium]] and [[ammonium perrhenate]]s. These are white, water-soluble compounds.<ref name="Brauer">Glemser, O. (1963) "Ammonium Perrhenate" in ''Handbook of Preparative Inorganic Chemistry'', 2nd ed., G. Brauer (ed.), Academic Press, NY., Vol. 1, pp. 1476–85.</ref> Tetrathioperrhenate anion [ReS<sub>4</sub>]<sup>−</sup> is possible.<ref>{{cite book |last1= Goodman |first1= JT |last2= Rauchfuss |first2= TB |chapter= Useful Reagents and Ligands | title = Inorganic Syntheses | series = [[Inorganic Syntheses]] | year = 2002 | volume = 33 | pages = 107–110 | doi=10.1002/0471224502.ch2| isbn = 0471208256 }}</ref> ====Halides and oxyhalides==== The most common rhenium chlorides are ReCl<sub>6</sub>, [[Rhenium pentachloride|ReCl<sub>5</sub>]], ReCl<sub>4</sub>, and [[Rhenium trichloride|ReCl<sub>3</sub>]].<ref name="G&W">{{Greenwood&Earnshaw2nd}}</ref> The structures of these compounds often feature extensive Re-Re bonding, which is characteristic of this metal in oxidation states lower than VII. Salts of [Re<sub>2</sub>Cl<sub>8</sub>]<sup>2−</sup> feature a [[quadruple bond|quadruple]] metal-metal bond. Although the highest rhenium chloride features Re(VI), fluorine gives the d<sup>0</sup> Re(VII) derivative [[rhenium heptafluoride]]. Bromides and iodides of rhenium are also well known, including [[rhenium pentabromide]] and [[rhenium tetraiodide]]. Like tungsten and molybdenum, with which it shares chemical similarities, rhenium forms a variety of [[Oxohalide|oxyhalides]]. The oxychlorides are most common, and include ReOCl<sub>4</sub>, ReOCl<sub>3</sub>. ====Oxides and sulfides==== [[File:Perrhenic-acid-3D-balls.png|left|thumb|upright=0.5|Perrhenic acid (H<sub>4</sub>Re<sub>2</sub>O<sub>9</sub>) adopts an unconventional structure.]] The most common oxide is the volatile yellow [[rhenium(VII) oxide|Re<sub>2</sub>O<sub>7</sub>]]. The red [[ReO3|rhenium trioxide]] ReO<sub>3</sub> adopts a [[perovskite]]-like structure. Other oxides include Re<sub>2</sub>O<sub>5</sub>, [[Rhenium(IV) oxide|ReO<sub>2</sub>]], and Re<sub>2</sub>O<sub>3</sub>.<ref name="G&W" /> The [[sulfide]]s are [[rhenium disulfide|ReS<sub>2</sub>]] and [[Rhenium(VII) sulfide|Re<sub>2</sub>S<sub>7</sub>]]. Perrhenate salts can be converted to tetrathioperrhenate by the action of [[ammonium hydrosulfide]].<ref>{{cite book|last =Goodman|first=J. T.|author2=Rauchfuss, T. B. |chapter=Useful Reagents and Ligands |title=Inorganic Syntheses|date=2002|volume=33|pages=107–110|doi=10.1002/0471224502.ch2|isbn=9780471208259}}</ref> ====Other compounds==== [[Rhenium diboride]] (ReB<sub>2</sub>) is a hard compound having a hardness similar to that of [[tungsten carbide]], [[silicon carbide]], [[titanium diboride]] or [[zirconium diboride]].<ref>{{cite journal| first=Jiaqian|last=Qin|author2=He, Duanwei |author3=Wang, Jianghua |author4=Fang, Leiming |author5=Lei, Li |author6=Li, Yongjun |author7=Hu, Juan |author8=Kou, Zili |author9= Bi, Yan |title=Is Rhenium Diboride a Superhard Material?| journal= Advanced Materials |volume=20|date =2008| pages=4780–4783| doi=10.1002/adma.200801471| issue=24|bibcode=2008AdM....20.4780Q |s2cid=98327405 }}</ref> ====Organorhenium compounds==== {{Main|Organorhenium chemistry}} [[Dirhenium decacarbonyl]] is the most common entry to organorhenium chemistry. Its reduction with sodium [[Amalgam (chemistry)|amalgam]] gives Na[Re(CO)<sub>5</sub>] with rhenium in the formal oxidation state −1.<ref>{{cite journal|doi = 10.1002/cber.19901230103|title = Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe|date = 1990|author = Breimair, Josef|journal = Chemische Berichte|volume = 123|page = 7|last2 = Steimann|first2 = Manfred|last3 = Wagner|first3 = Barbara|last4 = Beck|first4 = Wolfgang}}</ref> Dirhenium decacarbonyl can be oxidised with [[bromine]] to [[bromopentacarbonylrhenium(I)]]:<ref>{{cite book|title=Inorganic Syntheses|first=Steven P.|last =Schmidt|author2=Trogler, William C. |author3=Basolo, Fred |chapter=Pentacarbonylrhenium Halides | volume=28|date=1990|pages=154–159|doi=10.1002/9780470132593.ch42|isbn=978-0-470-13259-3}}</ref> :Re<sub>2</sub>(CO)<sub>10</sub> + Br<sub>2</sub> → 2 Re(CO)<sub>5</sub>Br Reduction of this pentacarbonyl with [[zinc]] and [[acetic acid]] gives [[pentacarbonylhydridorhenium]]:<ref name="Urb">{{cite book|author=Michael A. Urbancic|author2=John R. Shapley|chapter=Pentacarbonylhydridorhenium |title=Inorganic Syntheses|volume=28|pages=165–168|date=1990|doi =10.1002/9780470132593.ch43|isbn=978-0-470-13259-3}}</ref> :Re(CO)<sub>5</sub>Br + Zn + HOAc → Re(CO)<sub>5</sub>H + ZnBr(OAc) [[Methylrhenium trioxide]] ("MTO"), CH<sub>3</sub>ReO<sub>3</sub> is a volatile, colourless solid that has been used as a [[catalyst]] in some laboratory experiments. It can be prepared by many routes, a typical method is the reaction of Re<sub>2</sub>O<sub>7</sub> and [[tetramethyltin]]: :Re<sub>2</sub>O<sub>7</sub> + (CH<sub>3</sub>)<sub>4</sub>Sn → CH<sub>3</sub>ReO<sub>3</sub> + (CH<sub>3</sub>)<sub>3</sub>SnOReO<sub>3</sub> Analogous alkyl and aryl derivatives are known. MTO catalyses for the oxidations with [[hydrogen peroxide]]. Terminal [[alkyne]]s yield the corresponding acid or ester, internal alkynes yield diketones, and [[alkene]]s give epoxides. MTO also catalyses the conversion of [[aldehyde]]s and [[diazoalkane]]s into an alkene.<ref>Hudson, A. (2002) “Methyltrioxorhenium” in ''Encyclopedia of Reagents for Organic Synthesis''. John Wiley & Sons: New York, {{ISBN|9780470842898}}, {{doi|10.1002/047084289X}}.</ref> ====Nonahydridorhenate==== [[File:Nonahydridorhenate-3D-balls.png|right|thumb|upright=0.5|Structure of {{chem|ReH|9|2-}}.]] A distinctive derivative of rhenium is [[Potassium nonahydridorhenate|nonahydridorhenate]], originally thought to be the ''rhenide'' anion, Re<sup>−</sup>, but actually containing the {{chem|ReH|9|2-}} anion in which the oxidation state of rhenium is +7. ===Occurrence=== [[Image:Molybdenit 1.jpg|thumb|left|Molybdenite]] Rhenium is one of the rarest elements in [[Earth's crust]] with an average concentration of 1 ppb;<ref name="G&W" /> other sources quote the number of 0.5 ppb making it the 77th most abundant element in Earth's crust.<ref name="Emsley2001p358">{{cite book|title=Nature's Building Blocks: An A-Z Guide to the Elements|last=Emsley|first=John|publisher=Oxford University Press|date=2001|location=Oxford, England, UK|isbn=978-0-19-850340-8|chapter=Rhenium|pages=[https://archive.org/details/naturesbuildingb0000emsl/page/358 358–360]|chapter-url=https://books.google.com/books?id=j-Xu07p3cKwC|url=https://archive.org/details/naturesbuildingb0000emsl/page/358}}</ref> Rhenium is probably not found free in nature (its possible natural occurrence is uncertain), but occurs in amounts up to 0.2%<ref name="G&W" /> in the mineral [[molybdenite]] (which is primarily [[molybdenum disulfide]]), the major commercial source, although single molybdenite samples with up to 1.88% have been found.<ref name="Rousch" /> [[Chile]] has the world's largest rhenium reserves, part of the copper ore deposits, and was the leading producer as of 2005.<ref>{{cite web|url=http://minerals.usgs.gov/minerals/pubs/country/2005/cimyb05.pdf |first=Steve T.|last=Anderson| publisher=[[United States Geological Survey]]|title=2005 Minerals Yearbook: Chile|access-date=2008-10-26}}</ref> It was only recently (in 1994) that the first rhenium [[mineral]] was found and described, a rhenium [[sulfide mineral]] (ReS<sub>2</sub>) condensing from a [[fumarole]] on [[Kudriavy]] volcano, [[Iturup]] island, in the [[Kuril Islands]].<ref>{{cite journal|last=Korzhinsky|first=M. A.|author2=Tkachenko, S. I. |author3=Shmulovich, K. I. |author4=Taran Y. A. |author5= Steinberg, G. S. | date=2004-05-05|title=Discovery of a pure rhenium mineral at Kudriavy volcano|journal=[[Nature (journal)|Nature]]|volume=369|pages=51–52|doi=10.1038/369051a0|issue=6475|bibcode = 1994Natur.369...51K |s2cid=4344624}}</ref> Kudriavy discharges up to 20–60 kg rhenium per year mostly in the form of rhenium disulfide.<ref>{{cite journal| last1 = Kremenetsky| first1 = A. A.| last2 = Chaplygin| first2 = I. V.| title = Concentration of rhenium and other rare metals in gases of the Kudryavy Volcano (Iturup Island, Kurile Islands)| journal = Doklady Earth Sciences| volume = 430| issue = 1| page = 114| date = 2010| doi = 10.1134/S1028334X10010253|bibcode = 2010DokES.430..114K | s2cid = 140632604}}</ref><ref>{{cite journal | last1 = Tessalina | first1 = S. | last2 = Yudovskaya | first2 = M. | last3 = Chaplygin | first3 = I. | last4 = Birck | first4 = J. | last5 = Capmas | first5 = F. | title = Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano | journal = Geochimica et Cosmochimica Acta | volume = 72 | page = 889 | date = 2008 | doi = 10.1016/j.gca.2007.11.015 | bibcode=2008GeCoA..72..889T | issue = 3}}</ref> Named [[rheniite]], this rare mineral commands high prices among collectors.<ref>{{cite web|url=http://www.galleries.com/minerals/sulfides/rheniite/rheniite.htm|publisher=Amethyst Galleries|title=The Mineral Rheniite}}</ref> <!--Dr. Kremenetsky from [[Russian Academy of Sciences|RAS]] Mineralogy Institute argues that this source could be commercially exploited,<ref>[http://www.nkj.ru/archive/articles/5340/ Завод на вулкане] // Наука и жизнь, № 11, 2000, in Russian.</ref> but currently there is no active attempts to extract it.--> {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)