Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rodrigues' rotation formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivation == [[Image:Rodrigues-formula.svg|300px|right|thumb|Rodrigues' rotation formula rotates {{math|'''v'''}} by an angle {{math|''θ''}} around vector {{math|''k''}} by decomposing it into its components parallel and perpendicular to {{math|''k''}}, and rotating only the perpendicular component.]] [[File:Orthogonal decomposition unit vector rodrigues rotation formula.svg|350px|thumb|Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components.]] Let {{math|'''k'''}} be a [[unit vector]] defining a rotation axis, and let {{math|'''v'''}} be any vector to rotate about {{math|'''k'''}} by angle {{math|''θ''}} ([[right hand rule]], anticlockwise in the figure), producing the rotated vector <math>\mathbb{v}_{\text{rot}}</math>. Using the [[dot product|dot]] and [[cross product]]s, the vector {{math|'''v'''}} can be decomposed into components parallel and perpendicular to the axis {{math|'''k'''}}, :<math> \mathbf{v} = \mathbf{v}_\parallel + \mathbf{v}_\perp \,, </math> where the component parallel to {{math|'''k'''}} is called the [[vector projection]] of {{math|'''v'''}} on {{math|'''k'''}}, :<math> \mathbf{v}_\parallel = (\mathbf{v} \cdot \mathbf{k}) \mathbf{k} </math>, and the component perpendicular to {{math|'''k'''}} is called the [[vector rejection]] of {{math|'''v'''}} from {{math|'''k'''}}: :<math>\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel} = \mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k} = - \mathbf{k}\times(\mathbf{k}\times\mathbf{v})</math>, where the last equality follows from the [[vector triple product]] formula: <math display="inline">\mathbf{a}\times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}</math>. Finally, the vector <math>\mathbf{k} \times \mathbf{v}_{\perp} = \mathbf{k} \times \mathbf{v}</math> is a copy of <math>\mathbf{v}_{\perp}</math> rotated 90° around <math>\mathbf{k}</math>. Thus the three vectors <math display="block">\mathbf{k}\,,\ \mathbf{v}_{\perp}\,,\, \mathbf{k} \times \mathbf{v}</math> form a [[Right-hand rule|right-handed]] orthogonal basis of <math>\mathbb{R}^3</math>, with the last two vectors of equal length. Under the rotation, the component <math>\mathbf{v}_{\parallel}</math> parallel to the axis will not change magnitude nor direction: :<math>\mathbf{v}_{\parallel\mathrm{rot}} = \mathbf{v}_\parallel \,;</math> while the perpendicular component will retain its magnitude but rotate its direction in the perpendicular plane spanned by <math>\mathbf{v}_{\perp}</math> and <math>\mathbf{k} \times \mathbf{v}</math>, according to :<math> \mathbf{v}_{\perp\mathrm{rot}} = \cos(\theta) \mathbf{v}_\perp + \sin(\theta) \mathbf{k}\times\mathbf{v}_\perp = \cos(\theta) \mathbf{v}_\perp + \sin(\theta) \mathbf{k}\times\mathbf{v} \,,</math> in analogy with the planar [[polar coordinates]] {{math|(''r'', ''θ'')}} in the [[Cartesian coordinates|Cartesian basis]] {{math|'''e'''<sub>''x''</sub>}}, {{math|'''e'''<sub>''y''</sub>}}: :<math>\mathbf{r} = r\cos(\theta) \mathbf{e}_x + r\sin(\theta) \mathbf{e}_y \,. </math> Now the full rotated vector is: :<math> \mathbf{v}_{\mathrm{rot}} = \mathbf{v}_{\parallel\mathrm{rot}} + \mathbf{v}_{\perp\mathrm{rot}} = \mathbf{v}_\parallel + \cos(\theta) \, \mathbf{v}_\perp + \sin(\theta) \mathbf{k}\times\mathbf{v} . </math> Substituting <math>\mathbf{v}_{\perp } = \mathbf{v} - \mathbf{v}_{\|} </math> or <math>\mathbf{v}_{\| } = \mathbf{v} - \mathbf{v}_{\perp}</math> in the last expression gives respectively: :<math display="block">\mathbf{v}_{\text{rot}} = \cos(\theta) \, \mathbf{v} + \sin(\theta) \mathbf{k}\times\mathbf{v} + (1 - \cos\theta)(\mathbf{k} \cdot \mathbf{v})\mathbf{k}</math> :<math display="block">\phantom{\mathbf{v}_{\text{rot}}} = \mathbf{v} + \sin(\theta) \mathbf{k}\times\mathbf{v} + (1-\cos\theta)\mathbf{k}\times(\mathbf{k}\times\mathbf{v}).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)