Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root-finding algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bisection method === The simplest root-finding algorithm is the [[bisection method]]. Let {{math|''f''}} be a [[continuous function]] for which one knows an interval {{math|[''a'', ''b'']}} such that {{math|''f''(''a'')}} and {{math|''f''(''b'')}} have opposite signs (a bracket). Let {{math|1=''c'' = (''a'' + ''b'')/2}} be the middle of the interval (the midpoint or the point that bisects the interval). Then either {{math|''f''(''a'')}} and {{math|''f''(''c'')}}, or {{math|''f''(''c'')}} and {{math|''f''(''b'')}} have opposite signs, and one has divided by two the size of the interval. Although the bisection method is robust, it gains one and only one [[bit]] of accuracy with each iteration. Therefore, the number of function evaluations required for finding an ''Ξ΅''-approximate root is <math>\log_2\frac{b-a}{\varepsilon}</math>. Other methods, under appropriate conditions, can gain accuracy faster.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)