Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Row and column vectors
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Operations == [[Matrix multiplication]] involves the action of multiplying each row vector of one matrix by each column vector of another matrix. The [[dot product]] of two column vectors {{math|'''a''', '''b'''}}, considered as elements of a coordinate space, is equal to the matrix product of the transpose of {{math|'''a'''}} with {{math|'''b'''}}, <math display="block">\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\intercal \mathbf{b} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + \cdots + a_n b_n \,, </math> By the symmetry of the dot product, the [[dot product]] of two column vectors {{math|'''a''', '''b'''}} is also equal to the matrix product of the transpose of {{math|'''b'''}} with {{math|'''a'''}}, <math display="block">\mathbf{b} \cdot \mathbf{a} = \mathbf{b}^\intercal \mathbf{a} = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = a_1 b_1 + \cdots + a_n b_n\,. </math> The matrix product of a column and a row vector gives the [[outer product]] of two vectors {{math|'''a''', '''b'''}}, an example of the more general [[tensor product]]. The matrix product of the column vector representation of {{math|'''a'''}} and the row vector representation of {{math|'''b'''}} gives the components of their dyadic product, <math display="block">\mathbf{a} \otimes \mathbf{b} = \mathbf{a} \mathbf{b}^\intercal = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \\ \end{bmatrix} \,, </math> which is the [[transpose]] of the matrix product of the column vector representation of {{math|'''b'''}} and the row vector representation of {{math|'''a'''}}, <math display="block">\mathbf{b} \otimes \mathbf{a} = \mathbf{b} \mathbf{a}^\intercal = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} b_1 a_1 & b_1 a_2 & b_1 a_3 \\ b_2 a_1 & b_2 a_2 & b_2 a_3 \\ b_3 a_1 & b_3 a_2 & b_3 a_3 \\ \end{bmatrix} \,. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)