Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Runge–Kutta methods
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit Runge–Kutta methods== The family of [[Explicit and implicit methods|explicit]] Runge–Kutta methods is a generalization of the RK4 method mentioned above. It is given by :<math> y_{n+1} = y_n + h \sum_{i=1}^s b_i k_i, </math> where<ref>{{harvnb|Press|Teukolsky|Vetterling|Flannery|2007|p=907}}</ref> :<math> \begin{align} k_1 & = f(t_n, y_n), \\ k_2 & = f(t_n+c_2h, y_n+(a_{21}k_1)h), \\ k_3 & = f(t_n+c_3h, y_n+(a_{31}k_1+a_{32}k_2)h), \\ & \ \ \vdots \\ k_s & = f(t_n+c_sh, y_n+(a_{s1}k_1+a_{s2}k_2+\cdots+a_{s,s-1}k_{s-1})h). \end{align} </math> :(''Note: the above equations may have different but equivalent definitions in some texts.''<ref name=notation />) To specify a particular method, one needs to provide the integer ''s'' (the number of stages), and the coefficients ''a<sub>ij</sub>'' (for 1 ≤ ''j'' < ''i'' ≤ ''s''), ''b<sub>i</sub>'' (for ''i'' = 1, 2, ..., ''s'') and ''c<sub>i</sub>'' (for ''i'' = 2, 3, ..., ''s''). The matrix [''a<sub>ij</sub>''] is called the ''Runge–Kutta matrix'', while the ''b<sub>i</sub>'' and ''c<sub>i</sub>'' are known as the ''weights'' and the ''nodes''.<ref>{{harvnb|Iserles|1996|p=38}}</ref> These data are usually arranged in a mnemonic device, known as a ''Butcher tableau'' (after [[John C. Butcher]]): :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | <math> 0 </math> |- | style="border-right:1px solid;" | <math> c_2 </math> || <math> a_{21} </math> |- | style="border-right:1px solid;" | <math> c_3 </math> || <math> a_{31} </math> || <math> a_{32} </math> |- | style="border-right:1px solid;" | <math> \vdots </math> || <math> \vdots </math> || || <math> \ddots </math> |- | style="border-right:1px solid; border-bottom:1px solid;" | <math> c_s </math> | style="border-bottom:1px solid;" | <math> a_{s1} </math> | style="border-bottom:1px solid;" | <math> a_{s2} </math> | style="border-bottom:1px solid;" | <math> \cdots </math> | style="border-bottom:1px solid;" | <math> a_{s,s-1} </math> || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || <math> b_1 </math> || <math> b_2 </math> || <math> \cdots </math> || <math> b_{s-1} </math> || <math> b_s </math> |} A [[Taylor series]] expansion shows that the Runge–Kutta method is consistent if and only if :<math>\sum_{i=1}^{s} b_{i} = 1.</math> There are also accompanying requirements if one requires the method to have a certain order ''p'', meaning that the local truncation error is O(''h<sup>p</sup>''<sup>+1</sup>). These can be derived from the definition of the truncation error itself. For example, a two-stage method has order 2 if ''b''<sub>1</sub> + ''b''<sub>2</sub> = 1, ''b''<sub>2</sub>''c''<sub>2</sub> = 1/2, and ''b''<sub>2</sub>''a''<sub>21</sub> = 1/2.<ref name="Iserles 1996 39">{{harvnb|Iserles|1996|p=39}}</ref> Note that a popular condition for determining coefficients is <ref name="Iserles 1996 39"/> :<math>\sum_{j=1}^{i-1} a_{ij} = c_i \text{ for } i=2, \ldots, s.</math> This condition alone, however, is neither sufficient, nor necessary for consistency. <ref> As a counterexample, consider any explicit 2-stage Runge-Kutta scheme with <math>b_{1}=b_{2}=1/2</math> and <math>c_1</math> and <math>a_{21}</math> randomly chosen. This method is consistent and (in general) first-order convergent. On the other hand, the 1-stage method with <math>b_1=1/2</math> is inconsistent and fails to converge, even though it trivially holds that <math>\sum_{j=1}^{i-1} a_{ij} = c_i \text{ for } i=2, \ldots, s.</math>. </ref> In general, if an explicit <math>s</math>-stage Runge–Kutta method has order <math>p</math>, then it can be proven that the number of stages must satisfy <math>s \ge p</math> and if <math>p \ge 5</math>, then <math>s \ge p+1</math>.<ref>{{harvnb|Butcher|2008|p=187}}</ref> However, it is not known whether these bounds are ''sharp'' in all cases. In some cases, it is proven that the bound cannot be achieved. For instance, Butcher proved that for <math>p>6</math>, there is no explicit method with <math>s=p+1</math> stages.<ref name="Butcher 1965 408">{{harvnb|Butcher|1965|p=408}}</ref> Butcher also proved that for <math>p>7</math>, there is no explicit Runge-Kutta method with <math>p+2</math> stages.<ref name="Butcher 1985">{{harvnb|Butcher|1985}}</ref> In general, however, it remains an open problem what the precise minimum number of stages <math>s</math> is for an explicit Runge–Kutta method to have order <math>p</math>. Some values which are known are:<ref>{{harvnb|Butcher|2008|pp=187–196}}</ref> :<math> \begin{array}{c|cccccccc} p & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \min s & 1 & 2 & 3 & 4 & 6 & 7 & 9 & 11 \end{array} </math> The provable bound above then imply that we can not find methods of orders <math>p=1, 2, \ldots, 6</math> that require fewer stages than the methods we already know for these orders. The work of Butcher also proves that 7th and 8th order methods have a minimum of 9 and 11 stages, respectively.<ref name="Butcher 1965 408"/><ref name="Butcher 1985"/> An example of an explicit method of order 6 with 7 stages can be found in Ref.<ref>{{harvnb|Butcher|1964}}</ref> Explicit methods of order 7 with 9 stages<ref name="Butcher 1965 408"/> and explicit methods of order 8 with 11 stages<ref>{{harvnb|Curtis|1970|p=268}}</ref> are also known. See Refs.<ref>{{harvnb|Hairer|Nørsett|Wanner|1993|p=179}}</ref><ref>{{harvnb|Butcher|1996|p=247}}</ref> for a summary. ===Examples=== The RK4 method falls in this framework. Its tableau is<ref name="Süli 2003 352">{{harvnb|Süli|Mayers|2003|p=352}}</ref> :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid;" | 1/2 || 1/2 |- | style="border-right:1px solid;" | 1/2 || 0 || 1/2 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1 || style="border-bottom:1px solid;" | 0 | style="border-bottom:1px solid;" | 0 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1/6 || 1/3 || 1/3 || 1/6 |} A slight variation of "the" Runge–Kutta method is also due to Kutta in 1901 and is called the 3/8-rule.<ref>{{harvtxt|Hairer|Nørsett|Wanner|1993|p=138}} refer to {{harvtxt|Kutta|1901}}.</ref> The primary advantage this method has is that almost all of the error coefficients are smaller than in the popular method, but it requires slightly more FLOPs (floating-point operations) per time step. Its Butcher tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid;" | 1/3 || 1/3 |- | style="border-right:1px solid;" | 2/3 || −1/3 || 1 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | −1 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1/8 || 3/8 || 3/8 || 1/8 |} However, the simplest Runge–Kutta method is the (forward) [[Euler method]], given by the formula <math> y_{n+1} = y_n + hf(t_n, y_n) </math>. This is the only consistent explicit Runge–Kutta method with one stage. The corresponding tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | width="10" style="border-right:1px solid; border-bottom:1px solid;" | 0 | width="10" style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1 |} ===Second-order methods with two stages=== An example of a second-order method with two stages is provided by the explicit [[midpoint method]]: :<math> y_{n+1} = y_n + hf\left(t_n+\frac{1}{2}h, y_n+\frac{1}{2}hf(t_n,\ y_n)\right). </math> The corresponding tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1/2 || style="border-bottom:1px solid;" | 1/2 || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 0 || 1 |} The midpoint method is not the only second-order Runge–Kutta method with two stages; there is a family of such methods, parameterized by α and given by the formula<ref>{{harvnb|Süli|Mayers|2003|p=327}}</ref> :<math> y_{n+1} = y_n + h\bigl( (1-\tfrac1{2\alpha}) f(t_n, y_n) + \tfrac1{2\alpha} f(t_n + \alpha h, y_n + \alpha h f(t_n, y_n)) \bigr). </math> Its Butcher tableau is :{| style="text-align: center" cellspacing="0" cellpadding="8" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid; border-bottom:1px solid;" | <math>\alpha</math> || style="border-bottom:1px solid; text-align: center;" | <math>\alpha</math> || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || <math>(1-\tfrac1{2\alpha})</math> || <math>\tfrac1{2\alpha}</math> |} In this family, <math>\alpha=\tfrac12</math> gives the [[midpoint method]], <math>\alpha=1</math> is [[Heun's method]],<ref name="Süli 2003 328"/> and <math>\alpha=\tfrac23</math> is Ralston's method.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)