Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Schur complement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == * If ''p'' and ''q'' are both 1 (i.e., ''A'', ''B'', ''C'' and ''D'' are all scalars), we get the familiar formula for the inverse of a 2-by-2 matrix: : <math> M^{-1} = \frac{1}{AD-BC} \left[ \begin{matrix} D & -B \\ -C & A \end{matrix}\right] </math> : provided that ''AD'' − ''BC'' is non-zero. * In general, if ''A'' is invertible, then : <math>\begin{align} M &= \begin{bmatrix} A&B\\C&D \end{bmatrix} = \begin{bmatrix} I_p & 0 \\ CA^{-1} & I_q \end{bmatrix}\begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix}\begin{bmatrix} I_p & A^{-1}B \\ 0 & I_q \end{bmatrix}, \\[4pt] M^{-1} &= \begin{bmatrix} A^{-1} + A^{-1} B (M/A)^{-1} C A^{-1} & - A^{-1} B (M/A)^{-1} \\ - (M/A)^{-1} CA^{-1} & (M/A)^{-1} \end{bmatrix} \end{align}</math> : whenever this inverse exists. * (Schur's formula) When ''A'', respectively ''D'', is invertible, the determinant of ''M'' is also clearly seen to be given by : <math>\det(M) = \det(A) \det\left(D - CA^{-1} B\right)</math>, respectively : <math>\det(M) = \det(D) \det\left(A - BD^{-1} C\right)</math>, : which generalizes the determinant formula for 2 Γ 2 matrices. * (Guttman rank additivity formula) If ''D'' is invertible, then the [[Rank (linear algebra)|rank]] of ''M'' is given by : <math> \operatorname{rank}(M) = \operatorname{rank}(D) + \operatorname{rank}\left(A - BD^{-1} C\right)</math> * ([[Haynsworth inertia additivity formula]]) If ''A'' is invertible, then the ''inertia'' of the block matrix ''M'' is equal to the inertia of ''A'' plus the inertia of ''M''/''A''. * (Quotient identity) <math>A/B = ((A/C)/(B/C))</math>.<ref>{{Cite journal |last1=Crabtree |first1=Douglas E. |last2=Haynsworth |first2=Emilie V. |date=1969 |title=An identity for the Schur complement of a matrix |url=https://www.ams.org/proc/1969-022-02/S0002-9939-1969-0255573-1/ |journal=Proceedings of the American Mathematical Society |language=en |volume=22 |issue=2 |pages=364β366 |doi=10.1090/S0002-9939-1969-0255573-1 |s2cid=122868483 |issn=0002-9939|doi-access=free }}</ref> * The Schur complement of a [[Laplacian matrix]] is also a Laplacian matrix.<ref>{{Cite journal |last=Devriendt |first=Karel |date=2022 |title=Effective resistance is more than distance: Laplacians, Simplices and the Schur complement |url=https://linkinghub.elsevier.com/retrieve/pii/S0024379522000039 |journal=Linear Algebra and Its Applications |language=en |volume=639 |pages=24β49 |doi=10.1016/j.laa.2022.01.002|arxiv=2010.04521 |s2cid=222272289 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)