Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Secant method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation of the method== Starting with initial values {{math|''x''<sub>0</sub>}} and {{math|''x''<sub>1</sub>}}, we construct a line through the points {{math|(''x''<sub>0</sub>, ''f''(''x''<sub>0</sub>))}} and {{math|(''x''<sub>1</sub>, ''f''(''x''<sub>1</sub>))}}, as shown in the picture above. In point–point form,<ref>{{cite book |last1=Marsden |first1=Jerrold |title=Calculus I |date=1985 |publisher=Springer-Verlag New York Inc. |isbn=978-1-4612-5024-1 |pages=31 |url=https://link.springer.com/book/10.1007/978-1-4612-5024-1}}</ref> the equation of this line is :<math>y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1) + f(x_1).</math> The root of this linear function, that is the value of {{mvar|x}} such that {{math|''y'' {{=}} 0}} is :<math>x = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}.</math> We then use this new value of {{mvar|x}} as {{math|''x''<sub>2</sub>}} and repeat the process, using {{math|''x''<sub>1</sub>}} and {{math|''x''<sub>2</sub>}} instead of {{math|''x''<sub>0</sub>}} and {{math|''x''<sub>1</sub>}}. We continue this process, solving for {{math|''x''<sub>3</sub>}}, {{math|''x''<sub>4</sub>}}, etc., until we reach a sufficiently high level of precision (a sufficiently small difference between {{math|''x''<sub>''n''</sub>}} and {{math|''x''<sub>''n''−1</sub>}}): :<math> \begin{align} x_2 & = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}, \\[6pt] x_3 & = x_2 - f(x_2) \frac{x_2 - x_1}{f(x_2) - f(x_1)}, \\[6pt] & \,\,\,\vdots \\[6pt] x_n & = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}. \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)