Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Second quantization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== First-quantized many-body wave function === Consider a complete set of single-particle wave functions <math>\psi_{\alpha}(\mathbf{r})</math> labeled by <math>\alpha</math> (which may be a combined index of a number of quantum numbers). The following wave function :<math>\Psi[\mathbf{r}_i]=\prod_{i=1}^{N}\psi_{\alpha_i}(\mathbf{r}_i)\equiv \psi_{\alpha_1}\otimes\psi_{\alpha_2}\otimes\cdots\otimes\psi_{\alpha_N}</math> represents an ''N''-particle state with the ''i''th particle occupying the single-particle state <math>|{\alpha_i}\rangle</math>. In the shorthanded notation, the position argument of the wave function may be omitted, and it is assumed that the ''i''th single-particle wave function describes the state of the ''i''th particle. The wave function <math>\Psi</math> has not been symmetrized or anti-symmetrized, thus in general not qualified as a many-body wave function for identical particles. However, it can be brought to the symmetrized (anti-symmetrized) form by operators <math>\mathcal{S}</math> for symmetrizer, and <math>\mathcal{A}</math> for [[antisymmetrizer]]. For bosons, the many-body wave function must be symmetrized, :<math>\Psi_{\rm B}[\mathbf{r}_i]=\mathcal{N}\mathcal{S}\Psi[\mathbf{r}_i]=\mathcal{N}\sum_{\pi\in S_N}\prod_{i=1}^{N}\psi_{\alpha_{\pi(i)}}(\mathbf{r}_i)=\mathcal{N}\sum_{\pi\in S_N}\psi_{\alpha_{\pi(1)}}\otimes\psi_{\alpha_{\pi(2)}}\otimes\cdots\otimes\psi_{\alpha_{\pi(N)}};</math> while for fermions, the many-body wave function must be anti-symmetrized, :<math>\Psi_{\rm F}[\mathbf{r}_i]=\mathcal{N}\mathcal{A}\Psi[\mathbf{r}_i]=\mathcal{N}\sum_{\pi\in S_N}(-1)^\pi\prod_{i=1}^{N}\psi_{\alpha_{\pi(i)}}(\mathbf{r}_i)=\mathcal{N}\sum_{\pi\in S_N}(-1)^\pi\psi_{\alpha_{\pi(1)}}\otimes\psi_{\alpha_{\pi(2)}}\otimes\cdots\otimes\psi_{\alpha_{\pi(N)}}.</math> Here <math>\pi</math> is an element in the ''N''-body permutation group (or [[symmetric group]]) <math>S_{N}</math>, which performs a [[permutation]] among the state labels <math>\alpha_i</math>, and <math>(-1)^\pi</math> denotes the corresponding [[parity of a permutation|permutation sign]]. <math>\mathcal{N}</math> is the normalization operator that normalizes the wave function. (It is the operator that applies a suitable numerical normalization factor to the symmetrized tensors of degree ''n''; see the next section for its value.) If one arranges the single-particle wave functions in a matrix <math>U</math>, such that the row-''i'' column-''j'' matrix element is <math>U_{ij}=\psi_{\alpha_{j}}(\mathbf{r}_i)\equiv \langle\mathbf{r}_i|\alpha_j\rangle</math>, then the boson many-body wave function can be simply written as a [[Permanent (mathematics)|permanent]] <math>\Psi_{\rm B}=\mathcal{N}\operatorname{perm} U</math>, and the fermion many-body wave function as a [[determinant]] <math>\Psi_{\rm F}=\mathcal{N}\det U</math> (also known as the [[Slater determinant]]).<ref name="Koch2013">{{cite book | author = Koch, Erik | chapter = Many-electron states | title = Emergent Phenomena in Correlated Matter |editor=Pavarini, Eva |editor2=Koch, Erik |editor3=Schollwöck, Ulrich | series = Modeling and Simulation | volume = 3 | publisher = Verlag des Forschungszentrum Jülich | location = Jülich | pages = 2.1–2.26 | url = http://hdl.handle.net/2128/5389 | year = 2013 | hdl = 2128/5389 | isbn = 978-3-89336-884-6 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)