Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semidefinite embedding
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Optimization formulation== Let <math>X \,\!</math> be the original input and <math>Y\,\!</math> be the embedding. If <math>i,j\,\!</math> are two neighbors, then the local isometry constraint that needs to be satisfied is:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 3, equation 8}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 3, equation 2}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 4, equation 2}}</ref> :<math>|X_{i}-X_{j}|^{2}=|Y_{i}-Y_{j}|^{2}\,\!</math> Let <math>G, K\,\!</math> be the [[Gramian matrix|Gram matrices]] of <math> X \,\!</math> and <math> Y \,\!</math> (i.e.: <math>G_{ij}=X_i \cdot X_j,K_{ij}=Y_i \cdot Y_j \,\!</math>). We can express the above constraint for every neighbor points <math>i,j\,\!</math> in term of <math>G, K\,\!</math>:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 3, equation 9}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 3, equation 3}}</ref> :<math>G_{ii}+G_{jj}-G_{ij}-G_{ji}=K_{ii}+K_{jj}-K_{ij}-K_{ji}\,\!</math> In addition, we also want to constrain the embedding <math> Y \,\!</math> to center at the origin:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 3, equation 6}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 3, equation 5}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 5, equation 8}}</ref> <math>0 = |\sum_{i}Y_{i}|^2\Leftrightarrow(\sum_{i}Y_{i}) \cdot (\sum_{i}Y_{i})\Leftrightarrow\sum_{i,j}Y_{i} \cdot Y_{j}\Leftrightarrow\sum_{i,j}K_{ij}</math> As described above, except the distances of neighbor points are preserved, the algorithm aims to maximize the pairwise distance of every pair of points. The objective function to be maximized is:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 4, equation 10}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 6}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 5, equation 4}}</ref> <math>T(Y)=\dfrac{1}{2N}\sum_{i,j}|Y_{i}-Y_{j}|^{2}</math> Intuitively, maximizing the function above is equivalent to pulling the points as far away from each other as possible and therefore "unfold" the manifold. The local isometry constraint <ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 7}}</ref> Let <math>\tau = max \{\eta_{ij}|Y_{i}-Y_{j}|^2\} \,\!</math> where <math>\eta_{ij} := \begin{cases} 1 & \mbox{if}\ i \mbox{ is a neighbour of } j \\ 0 & \mbox{otherwise} . \end{cases}</math> prevents the objective function from diverging (going to infinity). Since the graph has N points, the distance between any two points <math>|Y_{i}-Y_{j}|^2 \leq N \tau \,\!</math>. We can then bound the objective function as follows:<ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 8}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 5, equation 6}}</ref> :<math>T(Y)=\dfrac{1}{2N}\sum_{i,j}|Y_{i}-Y_{j}|^{2} \leq \dfrac{1}{2N}\sum_{i,j}(N\tau)^2 = \dfrac{N^3\tau^2}{2} \,\!</math> The objective function can be rewritten purely in the form of the Gram matrix:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 4, equation 11}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 9}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 6, equations 10 to 13}}</ref> :<math> \begin{align} T(Y) &{}= \dfrac{1}{2N}\sum_{i,j}|Y_{i}-Y_{j}|^{2} \\ &{}= \dfrac{1}{2N}\sum_{i,j}(Y_{i}^2+Y_{j}^2-Y_{i} \cdot Y_{j} - Y_{j} \cdot Y_{i})\\ &{}= \dfrac{1}{2N}(\sum_{i,j}Y_{i}^2+\sum_{i,j}Y_{j}^2-\sum_{i,j}Y_{i} \cdot Y_{j} -\sum_{i,j}Y_{j} \cdot Y_{i})\\ &{}= \dfrac{1}{2N}(\sum_{i,j}Y_{i}^2+\sum_{i,j}Y_{j}^2-0 -0)\\ &{}= \dfrac{1}{N}(\sum_{i}Y_{i}^2)=\dfrac{1}{N}(Tr(K))\\ \end{align} \,\!</math> Finally, the optimization can be formulated as:<ref>{{Harvnb|Weinberger, Sha and Saul|2004a|loc=page 4, section 3.3}}</ref><ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 9}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 6, equations 10 to 13}}</ref> <math> \begin{align} & \text{Maximize} && Tr(\mathbf{K})\\ & \text{subject to} && \mathbf{K} \succeq 0, \sum_{ij}\mathbf{K}_{ij} = 0 \\ & \text{and} && G_{ii}+G_{jj}-G_{ij}-G_{ji}=K_{ii}+K_{jj}-K_{ij}-K_{ji}, \forall i, j \mbox{ where } \eta_{ij} = 1, \end{align} </math> After the Gram matrix <math>K \,\!</math> is learned by semidefinite programming, the output <math>Y \,\!</math> can be obtained via [[Cholesky decomposition]]. In particular, the Gram matrix can be written as <math> K_{ij}=\sum_{\alpha = 1}^{N}(\lambda_{\alpha } V_{\alpha i} V_{\alpha j}) \,\!</math> where <math> V_{\alpha i} \,\!</math> is the i-th element of eigenvector <math> V_{\alpha} \,\!</math> of the eigenvalue <math> \lambda_{\alpha } \,\!</math>.<ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 10}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 7, equations 14}}</ref> It follows that the <math> \alpha \,\!</math>-th element of the output <math> Y_i \,\!</math> is <math> \sqrt{\lambda_{\alpha }} V_{\alpha i} \,\!</math>.<ref>{{Harvnb|Weinberger and Saul|2004b|loc=page 4, equation 11}}</ref><ref>{{Harvnb|Weinberger and Saul|2006|loc=page 7, equations 15}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)