Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seminorm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== <ul> <li>The {{em|trivial seminorm}} on <math>X,</math> which refers to the constant <math>0</math> map on <math>X,</math> induces the [[indiscrete topology]] on <math>X.</math></li> <li>Let <math>\mu</math> be a measure on a space <math>\Omega</math>. For an arbitrary constant <math>c \geq 1</math>, let <math>X</math> be the set of all functions <math>f: \Omega \rightarrow \mathbb{R}</math> for which <math display="block">\lVert f \rVert_c := \left( \int_{\Omega}| f |^c \, d\mu \right)^{1/c}</math> exists and is finite. It can be shown that <math>X</math> is a vector space, and the functional <math>\lVert \cdot \rVert_c</math> is a seminorm on <math>X</math>. However, it is not always a norm (e.g. if <math>\Omega = \mathbb{R}</math> and <math>\mu</math> is the [[Lebesgue measure]]) because <math>\lVert h \rVert_c = 0</math> does not always imply <math>h = 0</math>. To make <math>\lVert \cdot \rVert_c</math> a norm, quotient <math>X</math> by the closed subspace of functions <math>h</math> with <math>\lVert h \rVert_c = 0</math>. The [[Lp_space#Lp_spaces_and_Lebesgue_integrals|resulting space]], <math>L^c(\mu)</math>, has a norm induced by <math>\lVert \cdot \rVert_c</math>.</li> <li>If <math>f</math> is any [[linear form]] on a vector space then its [[absolute value]] <math>|f|,</math> defined by <math>x \mapsto |f(x)|,</math> is a seminorm.</li> <li>A [[sublinear function]] <math>f : X \to \R</math> on a real vector space <math>X</math> is a seminorm if and only if it is a {{em|symmetric function}}, meaning that <math>f(-x) = f(x)</math> for all <math>x \in X.</math></li> <li>Every real-valued [[sublinear function]] <math>f : X \to \R</math> on a real vector space <math>X</math> induces a seminorm <math>p : X \to \R</math> defined by <math>p(x) := \max \{f(x), f(-x)\}.</math>{{sfn|Narici|Beckenstein|2011|pp=120β121}}</li> <li>Any finite sum of seminorms is a seminorm. The restriction of a seminorm (respectively, norm) to a [[vector subspace]] is once again a seminorm (respectively, norm).</li> <li>If <math>p : X \to \R</math> and <math>q : Y \to \R</math> are seminorms (respectively, norms) on <math>X</math> and <math>Y</math> then the map <math>r : X \times Y \to \R</math> defined by <math>r(x, y) = p(x) + q(y)</math> is a seminorm (respectively, a norm) on <math>X \times Y.</math> In particular, the maps on <math>X \times Y</math> defined by <math>(x, y) \mapsto p(x)</math> and <math>(x, y) \mapsto q(y)</math> are both seminorms on <math>X \times Y.</math></li> <li>If <math>p</math> and <math>q</math> are seminorms on <math>X</math> then so are{{sfn|Narici|Beckenstein|2011|pp=116β128}} <math display="block">(p \vee q)(x) = \max \{p(x), q(x)\}</math> and <math display="block">(p \wedge q)(x) := \inf \{p(y) + q(z) : x = y + z \text{ with } y, z \in X\}</math> where <math>p \wedge q \leq p</math> and <math>p \wedge q \leq q.</math>{{sfn|Wilansky|2013|pp=15-21}} </li> <li>The space of seminorms on <math>X</math> is generally not a [[distributive lattice]] with respect to the above operations. For example, over <math>\R^2</math>, <math>p(x, y) := \max(|x|, |y|), q(x, y) := 2|x|, r(x, y) := 2|y| </math> are such that <math display="block">((p \vee q) \wedge (p \vee r)) (x, y) = \inf \{\max(2|x_1|, |y_1|) + \max(|x_2|, 2|y_2|) : x = x_1 + x_2 \text{ and } y = y_1 + y_2\}</math> while <math>(p \vee q \wedge r) (x, y) := \max(|x|, |y|)</math></li> <li>If <math>L : X \to Y</math> is a [[linear map]] and <math>q : Y \to \R</math> is a seminorm on <math>Y,</math> then <math>q \circ L : X \to \R</math> is a seminorm on <math>X.</math> The seminorm <math>q \circ L</math> will be a norm on <math>X</math> if and only if <math>L</math> is injective and the restriction <math>q\big\vert_{L(X)}</math> is a norm on <math>L(X).</math></li> </ul>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)