Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sensor fusion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algorithms == Sensor fusion is a term that covers a number of methods and algorithms, including: * [[Kalman filter]]<ref>{{Cite journal|last1=Li|first1=Wangyan|last2=Wang|first2=Zidong|last3=Wei|first3=Guoliang|last4=Ma|first4=Lifeng|last5=Hu|first5=Jun|last6=Ding|first6=Derui|date=2015|title=A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks|journal=Discrete Dynamics in Nature and Society|language=en|volume=2015|pages=1–12|doi=10.1155/2015/683701|issn=1026-0226|doi-access=free}}</ref> * [[Bayesian network]]s * [[Dempster–Shafer theory|Dempster–Shafer]] * [[Convolutional neural network]] * [[Gaussian process]]es<ref>{{Cite journal|last1=Badeli|first1=Vahid|last2=Ranftl|first2=Sascha|last3=Melito|first3=Gian Marco|last4=Reinbacher-Köstinger|first4=Alice|last5=Von Der Linden|first5=Wolfgang|last6=Ellermann|first6=Katrin|last7=Biro|first7=Oszkar|date=2021-01-01|title=Bayesian inference of multi-sensors impedance cardiography for detection of aortic dissection|url=https://doi.org/10.1108/COMPEL-03-2021-0072|journal=COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering|volume=41 |issue=3 |pages=824–839 |doi=10.1108/COMPEL-03-2021-0072|s2cid=245299500 |issn=0332-1649|url-access=subscription}}</ref><ref>{{Cite journal|last1=Ranftl|first1=Sascha|last2=Melito|first2=Gian Marco|last3=Badeli|first3=Vahid|last4=Reinbacher-Köstinger|first4=Alice|last5=Ellermann|first5=Katrin|last6=von der Linden|first6=Wolfgang|date=2019-12-31|title=Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection|journal=Entropy|volume=22|issue=1|pages=58|doi=10.3390/e22010058|pmid=33285833 |pmc=7516489 |issn=1099-4300|doi-access=free |bibcode=2019Entrp..22...58R }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)