Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Serpentinization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Formation of serpentine minerals === Olivine is a [[solid solution]] of [[forsterite]], the [[magnesium]] endmember of {{chem2|(Mg(2+), Fe(2+))2SiO4}}, and [[fayalite]], the [[iron]] endmember, with forsterite typically making up about 90% of the olivine in ultramafic rocks.<ref name=SnowDick1995>{{cite journal |last1=Snow |first1=Jonathan E. |last2=Dick |first2=Henry J.B. |title=Pervasive magnesium loss by marine weathering of peridotite |journal=Geochimica et Cosmochimica Acta |date=October 1995 |volume=59 |issue=20 |pages=4219β4235 |doi=10.1016/0016-7037(95)00239-V|bibcode=1995GeCoA..59.4219S }}</ref> [[Serpentine subgroup|Serpentine]] can form from [[olivine]] via several reactions: {{NumBlk|: |{{overset|[[Forsterite]]|3 {{chem|Mg|2|SiO|4}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + 4 {{chem|H|2|O}} β {{overset|serpentine|2 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}} |{{EquationRef|Reaction 1a}}}} {{NumBlk|: |{{overset|[[Forsterite]]|2 {{chem|Mg|2|SiO|4}}}} + {{overset|water|3 {{chem|H|2|O}}}} β {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[brucite]]|{{chem|Mg|(OH)|2}}}} |{{EquationRef|Reaction 1b}}}} Reaction 1a tightly binds silica, lowering its [[chemical activity]] to the lowest values seen in common rocks of the [[Earth's crust]].<ref name=FrostBeard2007>{{cite journal |last1=Frost |first1=B. R. |last2=Beard |first2=J. S. |title=On Silica Activity and Serpentinization |journal=Journal of Petrology |date=3 April 2007 |volume=48 |issue=7 |pages=1351β1368 |doi=10.1093/petrology/egm021|url=http://petrology.oxfordjournals.org/content/48/7/1351.full.pdf }}</ref> Serpentinization then continues through the hydration of olivine to yield serpentine and brucite (Reaction 1b).<ref name="Coleman77">{{cite book|last=Coleman|first=Robert G.|title=Ophiolites|date=1977|publisher=Springer-Verlag|isbn=978-3540082767|pages=100β101}}</ref> The mixture of brucite and serpentine formed by Reaction 1b has the lowest silica activity in the [[serpentinite]], so that the brucite phase is very important in understanding serpentinization.<ref name=FrostBeard2007/> However, the brucite is often blended in with the serpentine such that it is difficult to identify except with [[X-ray diffraction]], and it is easily altered under surface weathering conditions.{{sfn|Moody|1976|p=127}} A similar suite of reactions involves [[pyroxene]]-group minerals: {{NumBlk|: |{{overset|[[Enstatite]]|3 {{chem|Mg|SiO|3}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + {{chem|H|2|O}} β {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} |{{EquationRef|Reaction 2a}}}} {{NumBlk|: |{{overset|[[Enstatite]]|6 {{chem|Mg|SiO|3}}}} + 3 {{chem|H|2|O}} β {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} |{{EquationRef|Reaction 2b}}}} Reaction 2a quickly comes to a halt as silica becomes unavailable, and Reaction 2b takes over.{{sfn|Frost|Beard|2007|p=1355}} When olivine is abundant, silica activity drops low enough that talc begins to react with olivine: {{NumBlk|: |{{overset|[[Forsterite]]|6 {{chem|Mg|2|SiO|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} + {{overset|water|9 {{chem|H|2|O}}}} β {{overset|serpentine|5 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}} |{{EquationRef|Reaction 3}}}} This reaction requires higher temperatures than those at which brucite forms.{{sfn|Moody|1976|p=127}} The final mineralogy depends both on rock and fluid compositions, temperature, and pressure. Antigorite forms in reactions at temperatures that can exceed {{convert|600|C|F|abbr=on}} during metamorphism, and it is the serpentine group mineral stable at the highest temperatures. Lizardite and chrysotile can form at low temperatures very near the Earth's surface.{{sfn|Moody|1976|p=125, 127, 131}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)