Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sieve theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The inclusion–exclusion principle === For <math>\mathcal{P}</math> define :<math>A_{\operatorname{sift}}:=\{a\in A|(a,p_1\cdots p_k)=1\}, \quad p_1,\dots,p_k\in\mathcal{P}</math> and for each prime <math>p\in \mathcal{P}</math> denote the subset <math>E_p\subseteq A</math> of multiples <math>E_p:=\{pn:n\in\mathbb{N}\}</math> and let <math>|E_p|</math> be the cardinality. We now introduce a way to calculate the cardinality of <math>A_{\operatorname{sift}}</math>. For this the sifting range <math>\mathcal{P}</math> will be a concrete example of primes of the form <math>\mathcal{P}:=\{2,3,5,7,11,13\dots\}</math>. If one wants to calculate the cardinality of <math>A_{\operatorname{sift}}</math>, one can apply the [[inclusion–exclusion principle]]. This algorithm works like this: first one removes from the cardinality of <math>|A|</math> the cardinality <math>|E_2|</math> and <math>|E_3|</math>. Now since one has removed the numbers that are divisible by <math>2</math> and <math>3</math> twice, one has to add the cardinality <math>|E_6|</math>. In the next step one removes <math>|E_5|</math> and adds <math>|E_{10}|</math> and <math>|E_{15}|</math> again. Additionally one has now to remove <math>|E_{30}|</math>, i.e. the cardinality of all numbers divisible by <math>2,3</math> and <math>5</math>. This leads to the inclusion–exclusion principle :<math>|A_{\operatorname{sift}}|=|A|-|E_2|-|E_3|+|E_6|-|E_5|+|E_{10}|+|E_{15}|-|E_{30}|+\cdots</math> Notice that one can write this as :<math>|A_{\operatorname{sift}}|=\sum\limits_{d|P} \mu(d)| E_d|</math> where <math>\mu</math> is the [[Möbius function]] and <math>P:=\prod\limits_{p\in\mathcal{P}} p</math> the product of all primes in <math>\mathcal{P}</math> and <math>E_1:=A</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)