Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Signed-digit representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and properties== ===Digit set=== Let <math>\mathcal{D}</math> be a [[finite set]] of [[numerical digits]] with [[cardinality]] <math>b > 1</math> (If <math>b \leq 1</math>, then the positional number system is [[Triviality (mathematics)|trivial]] and only represents the [[trivial ring]]), with each digit denoted as <math>d_i</math> for <math>0 \leq i < b.</math> <math>b</math> is known as the <em>[[radix]]</em> or <em>[[number base]]</em>. <math>\mathcal{D}</math> can be used for a signed-digit representation if it's associated with a unique [[Function (mathematics)|function]] <math>f_\mathcal{D}:\mathcal{D}\rightarrow\mathbb{Z}</math> such that <math>f_\mathcal{D}(d_i) \equiv i \bmod b</math> for all <math>0 \leq i < b.</math> This function, <math>f_{\mathcal{D}},</math> is what rigorously and formally establishes how integer values are assigned to the symbols/glyphs in <math>\mathcal{D}.</math> One benefit of this formalism is that the definition of "the integers" (however they may be defined) is not conflated with any particular system for writing/representing them; in this way, these two distinct (albeit closely related) concepts are kept separate. <math>\mathcal{D}</math> can be [[Partition of a set|partitioned]] into three distinct sets <math>\mathcal{D}_{+}</math>, <math>\mathcal{D}_{0}</math>, and <math>\mathcal{D}_{-}</math>, representing the positive, zero, and negative digits respectively, such that all digits <math>d_{+}\in\mathcal{D}_{+}</math> satisfy <math>f_\mathcal{D}(d_{+}) > 0</math>, all digits <math>d_{0}\in\mathcal{D}_{0}</math> satisfy <math>f_\mathcal{D}(d_{0}) = 0</math> and all digits <math>d_{-}\in\mathcal{D}_{-}</math> satisfy <math>f_\mathcal{D}(d_{-}) < 0</math>. The cardinality of <math>\mathcal{D}_{+}</math> is <math>b_{+}</math>, the cardinality of <math>\mathcal{D}_{0}</math> is <math>b_{0}</math>, and the cardinality of <math>\mathcal{D}_{-}</math> is <math>b_{-}</math>, giving the number of positive and negative digits respectively, such that <math>b = b_{+} + b_{0} + b_{-}</math>. ====Balanced form representations==== {{See also|Balanced ternary}} Balanced form representations are representations where for every positive digit <math>d_{+}</math>, there exist a corresponding negative digit <math>d_{-}</math> such that <math>f_\mathcal{D}(d_{+}) = -f_\mathcal{D}(d_{-})</math>. It follows that <math>b_{+} = b_{-}</math>. Only [[odd number|odd]] bases can have balanced form representations, as otherwise <math>d_{b/2}</math> has to be the opposite of itself and hence 0, but <math>0\ne \frac b2</math>. In balanced form, the negative digits <math>d_{-}\in\mathcal{D}_{-}</math> are usually denoted as positive digits with a bar over the digit, as <math>d_{-} = \bar{d}_{+}</math> for <math>d_{+}\in\mathcal{D}_{+}</math>. For example, the digit set of [[balanced ternary]] would be <math>\mathcal{D}_{3} = \lbrace\bar{1},0,1\rbrace</math> with <math>f_{\mathcal{D}_{3}}(\bar{1}) = -1</math>, <math>f_{\mathcal{D}_{3}}(0) = 0</math>, and <math>f_{\mathcal{D}_{3}}(1) = 1</math>. This convention is adopted in [[finite field]]s of odd [[Prime number|prime]] order <math>q</math>:<ref>{{Cite book|title=Projective Geometries Over Finite Fields|first1=J. W. P.|last1=Hirschfeld|author-link=J. W. P. Hirschfeld|publisher=[[Oxford University Press]]|year=1979|page=8|isbn=978-0-19-850295-1}}</ref> :<math>\mathbb{F}_{q} = \lbrace0, 1, \bar{1} = -1,... d = \frac{q - 1}{2},\ \bar{d} = \frac{1-q}{2}\ |\ q = 0\rbrace.</math> ====Dual signed-digit representation==== Every digit set <math>\mathcal{D}</math> has a [[Duality (order theory)|dual]] digit set <math>\mathcal{D}^\operatorname{op}</math> given by the [[inverse order]] of the digits with an [[isomorphism]] <math>g:\mathcal{D}\rightarrow\mathcal{D}^\operatorname{op}</math> defined by <math>-f_\mathcal{D} = g\circ f_{\mathcal{D}^\operatorname{op}}</math>. As a result, for any signed-digit representations <math>\mathcal{N}</math> of a number system [[Ring (mathematics)|ring]] <math>N</math> constructed from <math>\mathcal{D}</math> with [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{N}\rightarrow N</math>, there exists a dual signed-digit representations of <math>N</math>, <math>\mathcal{N}^\operatorname{op}</math>, constructed from <math>\mathcal{D}^\operatorname{op}</math> with [[Valuation (algebra)|valuation]] <math>v_{\mathcal{D}^\operatorname{op}}:\mathcal{N}^\operatorname{op}\rightarrow N</math>, and an isomorphism <math>h:\mathcal{N}\rightarrow\mathcal{N}^\operatorname{op}</math> defined by <math>-v_\mathcal{D} = h\circ v_{\mathcal{D}^\operatorname{op}}</math>, where <math>-</math> is the additive inverse operator of <math>N</math>. The digit set for balanced form representations is [[self-dual]]. ===For integers=== Given the digit set <math>\mathcal{D}</math> and function <math>f:\mathcal{D}\rightarrow\mathbb{Z}</math> as defined above, let us define an [[integer]] [[endofunction]] <math>T:\mathbb{Z}\rightarrow\mathbb{Z}</math> as the following: :<math>T(n) = \begin{cases} \frac{n - f(d_i)}{b} &\text{if } n \equiv i \bmod b, 0 \leq i < b \end{cases}</math> If the only [[periodic point]] of <math>T</math> is the [[fixed point (mathematics)|fixed point]] <math>0</math>, then the set of all signed-digit representations of the [[integers]] <math>\mathbb{Z}</math> using <math>\mathcal{D}</math> is given by the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>m \in \mathcal{D}^+</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^+\rightarrow\mathbb{Z}</math> :<math>v_\mathcal{D}(m) = \sum_{i=0}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. Examples include [[balanced ternary]] with digits <math>\mathcal{D} = \lbrace \bar{1}, 0, 1\rbrace</math>. Otherwise, if there exist a non-zero [[periodic point]] of <math>T</math>, then there exist integers that are represented by an infinite number of non-zero digits in <math>\mathcal{D}</math>. Examples include the standard [[decimal numeral system]] with the digit set <math>\operatorname{dec} = \lbrace 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \rbrace</math>, which requires an [[Radix complement|infinite number of the digit]] <math>9</math> to represent the [[additive inverse]] <math>-1</math>, as <math>T_\operatorname{dec}(-1) = \frac{-1 - 9}{10} = -1</math>, and the positional numeral system with the digit set <math>\mathcal{D} = \lbrace \text{A}, 0, 1\rbrace</math> with <math>f(\text{A}) = -4</math>, which requires an infinite number of the digit <math>\text{A}</math> to represent the number <math>2</math>, as <math>T_\mathcal{D}(2) = \frac{2 - (-4)}{3} = 2</math>. ===For decimal fractions=== {{Main|Decimal representation}} If the integers can be represented by the [[Kleene plus]] <math>\mathcal{D}^+</math>, then the set of all signed-digit representations of the [[decimal fraction]]s, or [[Dyadic rational|<math>b</math>-adic rationals]] <math>\mathbb{Z}[1\backslash b]</math>, is given by <math>\mathcal{Q} = \mathcal{D}^+\times\mathcal{P}\times\mathcal{D}^*</math>, the [[Cartesian product]] of the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, the [[Singleton (mathematics)|singleton]] <math>\mathcal{P}</math> consisting of the [[radix point]] (<math>.</math> or <math>,</math>), and the [[Kleene star]] <math>\mathcal{D}^*</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{-1} \ldots d_{-m}</math>, with <math>m,n\in\mathbb{N}</math>. Each signed-digit representation <math>q \in \mathcal{Q}</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{Q}\rightarrow\mathbb{Z}[1\backslash b]</math> :<math>v_\mathcal{D}(q) = \sum_{i=-m}^{n}f_\mathcal{D}(d_{i})b^{i}</math> ===For real numbers=== {{Main|Construction of the reals#Construction from Cauchy sequences}} If the integers can be represented by the [[Kleene plus]] <math>\mathcal{D}^+</math>, then the set of all signed-digit representations of the [[real numbers]] <math>\mathbb{R}</math> is given by <math>\mathcal{R} = \mathcal{D}^+ \times \mathcal{P} \times \mathcal{D}^\mathbb{N}</math>, the [[Cartesian product]] of the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, the [[Singleton (mathematics)|singleton]] <math>\mathcal{P}</math> consisting of the [[radix point]] (<math>.</math> or <math>,</math>), and the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all [[infinity|infinite]] [[concatenation|concatenated]] strings of digits <math>d_{-1} d_{-2} \ldots</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>r \in \mathcal{R}</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{R}\rightarrow\mathbb{R}</math> :<math>v_\mathcal{D}(r) = \sum_{i=-\infty}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. The [[infinite series]] always [[Convergent series|converges]] to a finite real number. ===For other number systems=== All base-<math>b</math> numerals can be represented as a subset of <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite sequence]]s of digits in <math>\mathcal{D}</math>, where <math>\mathbb{Z}</math> is the set of [[integers]], and the [[Ring (mathematics)|ring]] of base-<math>b</math> numerals is represented by the [[formal power series ring]] <math>\mathbb{Z}[[b,b^{-1}]]</math>, the doubly infinite series :<math>\sum_{i = -\infty}^{\infty}a_i b^i</math> where <math>a_i\in\mathbb{Z}</math> for <math>i\in\mathbb{Z}</math>. ====Integers modulo powers of {{math|''b''}}==== The set of all signed-digit representations of the [[Integers modulo n|integers modulo <math>b^n</math>]], <math>\mathbb{Z}\backslash b^n\mathbb{Z}</math> is given by the set <math>\mathcal{D}^n</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{n - 1} \ldots d_0</math> of length <math>n</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^n\rightarrow\mathbb{Z}/b^n\mathbb{Z}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=0}^{n - 1}f_\mathcal{D}(d_{i})b^{i} \bmod b^n</math> ====Prüfer groups==== A [[Prüfer group]] is the [[quotient group]] <math>\mathbb{Z}(b^\infty) = \mathbb{Z}[1\backslash b]/\mathbb{Z}</math> of the integers and the <math>b</math>-adic rationals. The set of all signed-digit representations of the [[Prüfer group]] is given by the [[Kleene star]] <math>\mathcal{D}^*</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{1} \ldots d_{n}</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>p \in \mathcal{D}^*</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^*\rightarrow\mathbb{Z}(b^\infty)</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{n}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> ====Circle group==== The [[circle group]] is the quotient group <math>\mathbb{T} = \mathbb{R}/\mathbb{Z}</math> of the integers and the real numbers. The set of all signed-digit representations of the [[circle group]] is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all right-infinite concatenated strings of digits <math>d_{1} d_{2} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{T}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{\infty}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> The [[infinite series]] always [[Convergent series|converges]]. ===={{math|''b''}}-adic integers==== The set of all signed-digit representations of the [[p-adic integers|<math>b</math>-adic integers]], <math>\mathbb{Z}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all left-infinite concatenated strings of digits <math>\ldots d_{1} d_{0}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{Z}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=0}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> ===={{math|''b''}}-adic solenoids==== The set of all signed-digit representations of the [[Solenoid (mathematics)#p-adic solenoids|<math>b</math>-adic solenoids]], <math>\mathbb{T}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite]] concatenated strings of digits <math>\ldots d_{1} d_{0} d_{-1} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{Z}\rightarrow\mathbb{T}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=-\infty}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)