Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skellam distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == As it is a discrete probability function, the Skellam probability mass function is normalized: :<math> \sum_{k=-\infty}^\infty p(k;\mu_1,\mu_2)=1. </math> We know that the [[Probability-generating function|probability generating function]] (pgf) for a [[Poisson distribution]] is: :<math> G\left(t;\mu\right)= e^{\mu(t-1)}. </math> It follows that the pgf, <math>G(t;\mu_1,\mu_2)</math>, for a Skellam probability mass function will be: :<math> \begin{align} G(t;\mu_1,\mu_2) & = \sum_{k=-\infty}^\infty p(k;\mu_1,\mu_2)t^k \\[4pt] & = G\left(t;\mu_1\right)G\left(1/t;\mu_2\right) \\[4pt] & = e^{-(\mu_1+\mu_2)+\mu_1 t+\mu_2/t}. \end{align} </math> Notice that the form of the [[probability-generating function]] implies that the distribution of the sums or the differences of any number of independent Skellam-distributed variables are again Skellam-distributed. It is sometimes claimed that any linear combination of two Skellam distributed variables are again Skellam-distributed, but this is clearly not true since any multiplier other than <math>\pm 1</math> would change the [[support (mathematics)|support]] of the distribution and alter the pattern of [[Moment (mathematics)|moments]] in a way that no Skellam distribution can satisfy. The [[moment-generating function]] is given by: :<math>M\left(t;\mu_1,\mu_2\right) = G(e^t;\mu_1,\mu_2) = \sum_{k=0}^\infty { t^k \over k!}\,m_k</math> which yields the raw moments ''m''<sub>''k''</sub> . Define: :<math>\Delta\ \stackrel{\mathrm{def}}{=}\ \mu_1-\mu_2\,</math> :<math>\mu\ \stackrel{\mathrm{def}}{=}\ (\mu_1+\mu_2)/2.\,</math> Then the raw moments ''m''<sub>''k''</sub> are :<math>m_1=\left.\Delta\right.\,</math> :<math>m_2=\left.2\mu+\Delta^2\right.\,</math> :<math>m_3=\left.\Delta(1+6\mu+\Delta^2)\right.\,</math> The [[moment about the mean|central moments]] ''M''<sub> ''k''</sub> are :<math>M_2=\left.2\mu\right.,\,</math> :<math>M_3=\left.\Delta\right.,\,</math> :<math>M_4=\left.2\mu+12\mu^2\right..\,</math> The [[expected value|mean]], [[variance]], [[skewness]], and [[kurtosis|kurtosis excess]] are respectively: :<math> \begin{align} \operatorname E(n) & = \Delta, \\[4pt] \sigma^2 & =2\mu, \\[4pt] \gamma_1 & =\Delta/(2\mu)^{3/2}, \\[4pt] \gamma_2 & = 1/2. \end{align} </math> The [[cumulant-generating function]] is given by: :<math> K(t;\mu_1,\mu_2)\ \stackrel{\mathrm{def}}{=}\ \ln(M(t;\mu_1,\mu_2)) = \sum_{k=0}^\infty { t^k \over k!}\,\kappa_k </math> which yields the [[cumulant]]s: :<math>\kappa_{2k}=\left.2\mu\right.</math> :<math>\kappa_{2k+1}=\left.\Delta\right. .</math> For the special case when μ<sub>1</sub> = μ<sub>2</sub>, an [[asymptotic expansion]] of the [[Bessel function|modified Bessel function of the first kind]] yields for large μ: :<math> p(k;\mu,\mu)\sim {1\over\sqrt{4\pi\mu}}\left[1+\sum_{n=1}^\infty (-1)^n{\{4k^2-1^2\}\{4k^2-3^2\}\cdots\{4k^2-(2n-1)^2\} \over n!\,2^{3n}\,(2\mu)^n}\right]. </math> (Abramowitz & Stegun 1972, p. 377). Also, for this special case, when ''k'' is also large, and of [[Big O notation|order]] of the square root of 2μ, the distribution tends to a [[normal distribution]]: :<math> p(k;\mu,\mu)\sim {e^{-k^2/4\mu}\over\sqrt{4\pi\mu}}. </math> These special results can easily be extended to the more general case of different means. ===Bounds on weight above zero=== If <math>X \sim \operatorname{Skellam} (\mu_1, \mu_2) </math>, with <math>\mu_1 < \mu_2</math>, then ::<math> \frac{\exp(-(\sqrt{\mu_1} -\sqrt{\mu_2})^2 )}{(\mu_1 + \mu_2)^2} - \frac{e^{-(\mu_1 + \mu_2)}}{2\sqrt{\mu_1 \mu_2}} - \frac{e^{-(\mu_1 + \mu_2)}}{4\mu_1 \mu_2} \leq \Pr\{X \geq 0\} \leq \exp (- (\sqrt{\mu_1} -\sqrt{\mu_2})^2) </math> Details can be found in [[Poisson distribution#Poisson races]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)