Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectroradiometer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Spectral power distribution== {{main|spectral power distribution}} The spectral power distribution (SPD) of a source describes how much flux reaches the sensor over a particular wavelength and area. This effectively expresses the per-wavelength contribution to the radiometric quantity being measured. The SPD of a source is commonly shown as an SPD curve. SPD curves provide a visual representation of the color characteristics of a light source, showing the radiant flux emitted by the source at various wavelengths across the visible spectrum<ref>GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <{{cite web |url=http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |title=Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products |access-date=2013-12-11 |url-status=dead |archive-url=https://web.archive.org/web/20131214001859/http://www.gelighting.com/na/business_lighting/spectral_power_distribution_curves/ |archive-date=2013-12-14 }}></ref> It is also a metric by which we can evaluate a light source's ability to render colors, that is, whether a certain color stimulus can be properly rendered under a given [[illuminant]]. [[Image:Spectral Power Distributions.png|center|frame|Characteristic spectral power distributions (SPDs) for an [[Incandescent light bulb|incandescent lamp]] (left) and a [[fluorescent lamp]] (right). The horizontal axes are in [[nanometer]]s and the vertical axes show relative intensity in arbitrary units.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)