Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Specular reflection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Vector formulation === {{see also|Snell's law#Vector form}} The law of reflection can also be equivalently expressed using [[linear algebra]]. The direction of a reflected ray is determined by the vector of incidence and the [[surface normal]] vector. Given an incident direction <math>\mathbf{\hat{d}}_\mathrm{i}</math> from the light source to the surface and the surface normal direction <math>\mathbf{\hat{d}}_\mathrm{n},</math> the specularly reflected direction <math>\mathbf{\hat{d}}_\mathrm{s}</math> (all [[unit vector]]s) is:<ref>{{cite book |last=Haines |first=Eric |year=2021 |editor-last1=Marrs |editor-first1=Adam |editor-last2=Shirley |editor-first2=Peter |editor-last3=Wald |editor-first3=Ingo |title=Ray Tracing Gems II |publisher=Apress |pages=105β108 |chapter=Chapter 8: Reflection and Refraction Formulas |doi=10.1007/978-1-4842-7185-8_8 |isbn=978-1-4842-7185-8|s2cid=238899623 }}</ref><ref>{{cite book | last = Comninos | first = Peter | title = Mathematical and computer programming techniques for computer graphics | publisher = Springer | year = 2006 | url = {{google books |plainurl=y |id=Kdb7-YnnOVwC|page=361}}| isbn = 978-1-85233-902-9 | page = 361 | url-status = live | archive-url = https://web.archive.org/web/20180114234526/https://books.google.com/books?id=Kdb7-YnnOVwC&lpg=PR3&dq=isbn%3A9781852339029&pg=PA361 | archive-date = 2018-01-14 }}</ref> : <math>\mathbf{\hat{d}}_\mathrm{s} = \mathbf{\hat{d}}_\mathrm{i} - 2 \mathbf{\hat{d}}_\mathrm{n} \left(\mathbf{\hat{d}}_\mathrm{n} \cdot \mathbf{\hat{d}}_\mathrm{i}\right), </math> where <math>\mathbf{\hat{d}}_\mathrm{n} \cdot \mathbf{\hat{d}}_\mathrm{i}</math> is a scalar obtained with the [[dot product]]. Different authors may define the incident and reflection directions with [[sign convention|different signs]]. Assuming these [[Euclidean vector]]s are represented in [[column vector|column form]], the equation can be equivalently expressed as a matrix-vector multiplication:<ref>{{cite book | last1 = Farin | first1 = Gerald | last2 = Hansford | first2 = Dianne | author2-link = Dianne Hansford | title = Practical linear algebra: a geometry toolbox | url=http://www.farinhansford.com/books/pla/ | publisher = A K Peters | year = 2005 | isbn = 978-1-56881-234-2 | pages = 191β192 | url-status = live | archive-url = https://web.archive.org/web/20100307145056/http://www.farinhansford.com/books/pla/ | archive-date = 2010-03-07 }} {{google books|id=Iq6qVt22RZUC|title=Practical linear algebra: a geometry toolbox}}</ref> : <math>\mathbf{\hat{d}}_\mathrm{s} = \mathbf{R} \; \mathbf{\hat{d}}_\mathrm{i},</math> where <math>\mathbf{R}</math> is the so-called [[Householder matrix|Householder transformation matrix]], defined as: : <math>\mathbf{R} = \mathbf{I} - 2 \mathbf{\hat{d}}_\mathrm{n} \mathbf{\hat{d}}_\mathrm{n}^\mathrm{T};</math> in terms of the [[identity matrix]] <math>\mathbf{I}</math> and twice the [[outer product]] of <math>\mathbf{\hat{d}}_\mathrm{n}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)