Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Speech coding
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sample companding viewed as a form of speech coding == The [[A-law]] and [[ΞΌ-law algorithm]]s used in [[G.711]] PCM [[digital telephony]] can be seen as an earlier precursor of speech encoding, requiring only 8 bits per sample but giving effectively 12 [[audio bit depth|bits of resolution]].<ref>{{cite book|first1=N. S. |last1=Jayant|first2=P.|last2= Noll|title= Digital coding of waveforms|location= Englewood Cliffs|publisher= Prentice-Hall|year=1984}}</ref> Logarithmic companding are consistent with human hearing perception in that a low-amplitude noise is heard along a low-amplitude speech signal but is masked by a high-amplitude one. Although this would generate unacceptable distortion in a music signal, the peaky nature of speech waveforms, combined with the simple frequency structure of speech as a [[periodic waveform]] having a single [[fundamental frequency]] with occasional added noise bursts, make these very simple instantaneous compression algorithms acceptable for speech.{{citation needed|date=July 2023}}{{dubious|discuss=Logarithmic companding for music|date=July 2023}} A wide variety of other algorithms were tried at the time, mostly [[delta modulation]] variants, but after careful consideration, the A-law/ΞΌ-law algorithms were chosen by the designers of the early digital telephony systems. At the time of their design, their 33% bandwidth reduction for a very low complexity made an excellent engineering compromise. Their audio performance remains acceptable, and there was no need to replace them in the stationary phone network.{{citation needed|date=July 2023}} In 2008, [[G.711.1]] codec, which has a scalable structure, was standardized by ITU-T. The input sampling rate is 16 kHz.<ref name="g711-1-2012">{{citation |publisher=ITU-T |date=2012 |url=http://www.itu.int/rec/T-REC-G.711.1/en |title=G.711.1 : Wideband embedded extension for G.711 pulse code modulation |access-date=2022-12-24}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)