Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical harmonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Laplace's spherical harmonics== [[File:Rotating spherical harmonics.gif|thumb|right|Real (Laplace) spherical harmonics <math>Y_{\ell m}</math> for <math>\ell=0,\dots,4</math> (top to bottom) and <math>m=0,\dots,\ell</math> (left to right). Zonal, sectoral, and tesseral harmonics are depicted along the left-most column, the main diagonal, and elsewhere, respectively. (The negative order harmonics <math>Y_{\ell(-m)}</math> would be shown rotated about the ''z'' axis by <math>90^\circ/m</math> with respect to the positive order ones.)]] [[File:Sphericalfunctions.svg|thumb|500px|Alternative picture for the real spherical harmonics <math>Y_{\ell m}</math>.]] [[Laplace's equation]] imposes that the [[Laplacian]] of a scalar field {{math|''f''}} is zero. (Here the scalar field is understood to be complex, i.e. to correspond to a (smooth) function <math>f:\R^3 \to \Complex</math>.) In [[Spherical coordinate system|spherical coordinates]] this is:<ref>The approach to spherical harmonics taken here is found in {{harv|Courant|Hilbert|1962|loc=§V.8, §VII.5}}.</ref> <math display="block"> \nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial f}{\partial r}\right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} = 0.</math> Consider the problem of finding solutions of the form {{math|1=''f''(''r'', ''θ'', ''φ'') = ''R''(''r'') ''Y''(''θ'', ''φ'')}}. By [[Separation of variables#pde|separation of variables]], two differential equations result by imposing Laplace's equation: <math display="block">\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = \lambda,\qquad \frac{1}{Y}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta \frac{\partial Y}{\partial\theta}\right) + \frac{1}{Y}\frac{1}{\sin^2\theta}\frac{\partial^2Y}{\partial\varphi^2} = -\lambda.</math> The second equation can be simplified under the assumption that {{math|''Y''}} has the form {{math|1=''Y''(''θ'', ''φ'') = Θ(''θ'') Φ(''φ'')}}. Applying separation of variables again to the second equation gives way to the pair of differential equations <math display="block">\frac{1}{\Phi} \frac{d^2 \Phi}{d\varphi^2} = -m^2</math> <math display="block">\lambda\sin^2\theta + \frac{\sin\theta}{\Theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) = m^2</math> for some number {{math|''m''}}. A priori, {{math|''m''}} is a complex constant, but because {{math|Φ}} must be a [[periodic function]] whose period evenly divides {{math|2''π''}}, {{math|''m''}} is necessarily an integer and {{math|Φ}} is a linear combination of the complex exponentials {{math|''e''<sup>± ''imφ''</sup>}}. The solution function {{math|''Y''(''θ'', ''φ'')}} is regular at the poles of the sphere, where {{math|1=''θ'' = 0, ''π''}}. Imposing this regularity in the solution {{math|Θ}} of the second equation at the boundary points of the domain is a [[Sturm–Liouville problem]] that forces the parameter {{math|''λ''}} to be of the form {{math|1=''λ'' = ''ℓ'' (''ℓ'' + 1)}} for some non-negative integer with {{math|''ℓ'' ≥ {{!}}''m''{{!}}}}; this is also explained [[#Orbital angular momentum|below]] in terms of the [[angular momentum operator|orbital angular momentum]]. Furthermore, a change of variables {{math|1=''t'' = cos ''θ''}} transforms this equation into the [[associated Legendre function|Legendre equation]], whose solution is a multiple of the [[associated Legendre polynomial]] {{math|''P{{su|b=ℓ|p=m}}''(cos ''θ'')}} . Finally, the equation for {{math|''R''}} has solutions of the form {{math|1=''R''(''r'') = ''A r{{i sup|ℓ}}'' + ''B r''{{i sup|−''ℓ'' − 1}}}}; requiring the solution to be regular throughout {{math|'''R'''<sup>3</sup>}} forces {{math|1=''B'' = 0}}.<ref>Physical applications often take the solution that vanishes at infinity, making {{math|1=''A'' = 0}}. This does not affect the angular portion of the spherical harmonics.</ref> Here the solution was assumed to have the special form {{math|1=''Y''(''θ'', ''φ'') = Θ(''θ'') Φ(''φ'')}}. For a given value of {{math|''ℓ''}}, there are {{math|2''ℓ'' + 1}} independent solutions of this form, one for each integer {{math|''m''}} with {{math|−''ℓ'' ≤ ''m'' ≤ ''ℓ''}}. These angular solutions <math>Y_{\ell}^m : S^2 \to \Complex</math> are a product of [[trigonometric function]]s, here represented as a [[Euler's formula|complex exponential]], and associated Legendre polynomials: <math display="block"> Y_\ell^m (\theta, \varphi ) = N e^{i m \varphi } P_\ell^m (\cos{\theta} )</math> which fulfill <math display="block"> r^2\nabla^2 Y_\ell^m (\theta, \varphi ) = -\ell (\ell + 1 ) Y_\ell^m (\theta, \varphi ).</math> Here <math>Y_{\ell}^m:S^2 \to \Complex</math> is called a '''spherical harmonic function of degree {{math|''ℓ''}} and order {{math|''m''}}''', <math>P_{\ell}^m:[-1,1]\to \R</math> is an [[associated Legendre polynomial]], {{math|''N''}} is a normalization constant,<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Spherical Harmonic |url=https://mathworld.wolfram.com/ |access-date=2023-05-10 |website=mathworld.wolfram.com |language=en}}</ref> and {{math|''θ''}} and {{math|''φ''}} represent colatitude and longitude, respectively. In particular, the [[colatitude]] {{math|''θ''}}, or polar angle, ranges from {{math|''0''}} at the North Pole, to {{math|''π''/2}} at the Equator, to {{math|''π''}} at the South Pole, and the [[longitude]] {{math|''φ''}}, or [[azimuth]], may assume all values with {{math|0 ≤ ''φ'' < 2''π''}}. For a fixed integer {{math|''ℓ''}}, every solution {{math|''Y''(''θ'', ''φ'')}}, <math>Y: S^2 \to \Complex</math>, of the eigenvalue problem <math display="block"> r^2\nabla^2 Y = -\ell (\ell + 1 ) Y</math> is a [[linear combination]] of <math>Y_\ell^m : S^2 \to \Complex</math>. In fact, for any such solution, {{math|''r<sup>ℓ</sup> Y''(''θ'', ''φ'')}} is the expression in spherical coordinates of a [[homogeneous polynomial]] <math>\R^3 \to \Complex</math> that is harmonic (see [[#Higher dimensions|below]]), and so counting dimensions shows that there are {{math|2''ℓ'' + 1}} linearly independent such polynomials. The general solution <math>f:\R^3 \to \Complex</math> to [[Laplace's equation]] <math>\Delta f = 0</math> in a ball centered at the origin is a [[linear combination]] of the spherical harmonic functions multiplied by the appropriate scale factor {{math|''r<sup>ℓ</sup>''}}, <math display="block"> f(r, \theta, \varphi) = \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell f_\ell^m r^\ell Y_\ell^m (\theta, \varphi ), </math> where the <math>f_{\ell}^m \in \Complex</math> are constants and the factors {{math|''r<sup>ℓ</sup> Y<sub>ℓ</sub><sup>m</sup>''}} are known as (''regular'') [[solid harmonics]] <math>\R^3 \to \Complex</math>. Such an expansion is valid in the [[Ball (mathematics)|ball]] <math display="block"> r < R = \frac{1}{\limsup_{\ell\to\infty} |f_\ell^m|^{{1}/{\ell}}}.</math> For <math> r > R</math>, the solid harmonics with negative powers of <math>r</math> (the ''irregular'' [[solid harmonics]] <math>\R^3 \setminus \{ \mathbf{0} \} \to \Complex</math>) are chosen instead. In that case, one needs to expand the solution of known regions in [[Laurent series]] (about <math>r=\infty</math>), instead of the [[Taylor series]] (about <math>r = 0</math>) used above, to match the terms and find series expansion coefficients <math>f^m_\ell \in \Complex</math>. ===Orbital angular momentum=== In quantum mechanics, Laplace's spherical harmonics are understood in terms of the [[angular momentum operator|orbital angular momentum]]<ref>{{harvnb|Edmonds|1957|loc=§2.5}}</ref> <math display="block">\mathbf{L} = -i\hbar (\mathbf{x}\times \mathbf{\nabla}) = L_x\mathbf{i} + L_y\mathbf{j}+L_z\mathbf{k}.</math> The {{math|''ħ''}} is conventional in quantum mechanics; it is convenient to work in units in which {{math|1=''ħ'' = 1}}. The spherical harmonics are eigenfunctions of the square of the orbital angular momentum <math display="block">\begin{align} \mathbf{L}^2 &= -r^2\nabla^2 + \left(r\frac{\partial}{\partial r}+1\right)r\frac{\partial}{\partial r}\\ &= -\frac{1}{\sin\theta} \frac{\partial}{\partial \theta}\sin\theta \frac{\partial}{\partial \theta} - \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \varphi^2}. \end{align}</math> Laplace's spherical harmonics are the joint eigenfunctions of the square of the orbital angular momentum and the generator of rotations about the azimuthal axis: <math display="block">\begin{align} L_z &= -i\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)\\ &=-i\frac{\partial}{\partial\varphi}. \end{align}</math> These operators commute, and are [[Densely defined operator|densely defined]] [[self-adjoint operator]]s on the [[Lp space#Weighted Lp spaces|weighted]] [[Hilbert space]] of functions ''f'' square-integrable with respect to the [[normal distribution]] as the weight function on '''R'''<sup>3</sup>: <math display="block">\frac{1}{(2\pi)^{3/2}}\int_{\R^3} |f(x)|^2 e^{-|x|^2/2}\,dx < \infty.</math> Furthermore, '''L'''<sup>2</sup> is a [[positive operator]]. If {{math|''Y''}} is a joint eigenfunction of {{math|'''L'''<sup>2</sup>}} and {{math|''L''<sub>''z''</sub>}}, then by definition <math display="block">\begin{align} \mathbf{L}^2Y &= \lambda Y\\ L_zY &= mY \end{align}</math> for some real numbers ''m'' and ''λ''. Here ''m'' must in fact be an integer, for ''Y'' must be periodic in the coordinate ''φ'' with period a number that evenly divides 2''π''. Furthermore, since <math display="block">\mathbf{L}^2 = L_x^2 + L_y^2 + L_z^2</math> and each of ''L''<sub>''x''</sub>, ''L''<sub>''y''</sub>, ''L''<sub>''z''</sub> are self-adjoint, it follows that {{math|''λ'' ≥ ''m''<sup>2</sup>}}. Denote this joint eigenspace by {{math|''E''<sub>''λ'',''m''</sub>}}, and define the [[raising and lowering operators]] by <math display="block">\begin{align} L_+ &= L_x + iL_y\\ L_- &= L_x - iL_y \end{align}</math> Then {{math|''L''<sub>+</sub>}} and {{math|''L''<sub>−</sub>}} commute with {{math|'''L'''<sup>2</sup>}}, and the Lie algebra generated by {{math|''L''<sub>+</sub>}}, {{math|''L''<sub>−</sub>}}, {{math|''L''<sub>''z''</sub>}} is the [[special linear Lie algebra]] of order 2, <math>\mathfrak{sl}_2(\Complex)</math>, with commutation relations <math display="block">[L_z,L_+] = L_+,\quad [L_z,L_-] = -L_-, \quad [L_+,L_-] = 2L_z.</math> Thus {{math|''L''<sub>+</sub> : ''E''<sub>''λ'',''m''</sub> → ''E''<sub>''λ'',''m''+1</sub>}} (it is a "raising operator") and {{math|''L''<sub>−</sub> : ''E''<sub>''λ'',''m''</sub> → ''E''<sub>''λ'',''m''−1</sub>}} (it is a "lowering operator"). In particular, {{math|1=''L''{{su|b=+|p=''k''}} : ''E''<sub>''λ'',''m''</sub> → ''E''<sub>''λ'',''m''+''k''</sub>}} must be zero for ''k'' sufficiently large, because the inequality {{mvar|''λ'' ≥ ''m''<sup>2</sup>}} must hold in each of the nontrivial joint eigenspaces. Let {{mvar|''Y'' ∈ ''E''<sub>''λ'',''m''</sub>}} be a nonzero joint eigenfunction, and let {{mvar|k}} be the least integer such that <math display="block">L_+^kY = 0.</math> Then, since <math display="block">L_-L_+ = \mathbf{L}^2 - L_z^2 - L_z</math> it follows that <math display="block">0 = L_-L_+^k Y = (\lambda - (m+k)^2-(m+k))Y.</math> Thus {{math|1=''λ'' = ''ℓ''(''ℓ'' + 1)}} for the positive integer {{math|1=''ℓ'' = ''m'' + ''k''}}. The foregoing has been all worked out in the spherical coordinate representation, <math>\langle \theta, \varphi| l m\rangle = Y_l^m (\theta, \varphi)</math> but may be expressed more abstractly in the complete, orthonormal [[Angular momentum operator#Orbital angular momentum in spherical coordinates|spherical ket basis]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)