Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Square triangular number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit formula== In 1778 [[Leonhard Euler]] determined the explicit formula<ref name=Dickson> {{cite book | last1 = Dickson | first1 = Leonard Eugene | author-link1 = Leonard Eugene Dickson |title = [[History of the Theory of Numbers]] | volume = 2 | publisher = American Mathematical Society | location = Providence | year = 1999 |orig-year = 1920 | page = 16 | isbn = 978-0-8218-1935-7 }} </ref><ref name=Euler> {{cite journal |last=Euler |first=Leonhard |author-link=Leonhard Euler |year=1813 |title=Regula facilis problemata Diophantea per numeros integros expedite resolvendi (An easy rule for Diophantine problems which are to be resolved quickly by integral numbers) |journal=Mémoires de l'Académie des Sciences de St.-Pétersbourg |volume= 4 |pages=3–17 |url=http://math.dartmouth.edu/~euler/pages/E739.html |language=la |access-date=2009-05-11 |quote=According to the records, it was presented to the St. Petersburg Academy on May 4, 1778.}} </ref>{{Rp|12–13}} {{bi|left=1.6|<math>\displaystyle N_k = \left( \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}} \right)^2. </math>}} Other equivalent formulas (obtained by expanding this formula) that may be convenient include {{bi|left=1.6|<math>\displaystyle \begin{align} N_k &= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{2k} - \left( 1 - \sqrt{2} \right)^{2k} \right)^2 \\ &= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{4k}-2 + \left( 1 - \sqrt{2} \right)^{4k} \right) \\ &= \tfrac{1}{32} \left( \left( 17 + 12\sqrt{2} \right)^k -2 + \left( 17 - 12\sqrt{2} \right)^k \right). \end{align}</math>}} The corresponding explicit formulas for <math>s_k</math> and <math>t_k</math> are:<ref name=Euler />{{Rp|13}} {{bi|left=1.6|<math>\displaystyle \begin{align} s_k &= \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}}, \\ t_k &= \frac{\left(3 + 2\sqrt{2}\right)^k + \left(3 - 2\sqrt{2}\right)^k - 2}{4}. \end{align}</math>}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)