Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Squeezed coherent state
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Operator representation == The general form of a '''squeezed coherent state''' for a quantum harmonic oscillator is given by :<math> |\alpha,\zeta\rangle = \hat{S}(\zeta)|\alpha\rangle = \hat{S}(\zeta) \hat{D}(\alpha)|0\rangle </math> where <math>|0\rangle</math> is the [[vacuum state]], <math>D(\alpha)</math> is the [[displacement operator]] and <math>S(\zeta)</math> is the [[squeeze operator]], given by :<math>\hat{D}(\alpha)=\exp (\alpha \hat a^\dagger - \alpha^* \hat a)\qquad \text{and}\qquad \hat{S}(\zeta)=\exp\bigg[\frac{1}{2} (\zeta^* \hat a^2-\zeta \hat a^{\dagger 2})\bigg]</math> where <math>\hat a</math> and <math>\hat a^\dagger</math> are annihilation and creation operators, respectively. For a [[quantum harmonic oscillator]] of angular frequency <math>\omega</math>, these operators are given by :<math>\hat a^\dagger = \sqrt{\frac{m\omega}{2\hbar}}\left(x-\frac{i p}{m\omega}\right)\qquad \text{and} \qquad \hat a = \sqrt{\frac{m\omega}{2\hbar}}\left(x+\frac{i p}{m\omega}\right)</math> For a real <math>\zeta</math>, (note that <math>\zeta = r e^{2 i \theta}</math>,<ref>Walls, D.F. and G. J. Milburn, Quantum Optics. </ref> where ''r'' is squeezing parameter),{{clarify|reason=So this is r?|date=September 2016}} the uncertainty in <math>x</math> and <math>p</math> are given by :<math>(\Delta x)^2=\frac{\hbar}{2m\omega}\mathrm{e}^{-2\zeta} \qquad\text{and}\qquad (\Delta p)^2=\frac{m\hbar\omega}{2}\mathrm{e}^{2\zeta}</math> Therefore, a squeezed coherent state saturates the [[Heisenberg uncertainty principle]] <math>\Delta x\Delta p=\frac{\hbar}{2}</math>, with reduced uncertainty in one of its quadrature components and increased uncertainty in the other. Some expectation values for squeezed coherent states are :<math> \langle\alpha,\zeta | \hat a | \alpha,\zeta\rangle = \alpha \cosh(r) - \alpha^{*}e^{i\theta} \sinh(r) </math> :<math> \langle\alpha,\zeta | {\hat{a}}^2 | \alpha,\zeta\rangle = \alpha ^{2} \cosh^{2}(r) +{\alpha^{*}}^{2}e^{2i\theta} \sinh^{2}(r) - (1+2{|\alpha|}^{2})e^{i\theta} \cosh (r) \sinh (r) </math> :<math> \langle\alpha,\zeta | {\hat{a}}^{\dagger}\hat{a} | \alpha,\zeta\rangle = |\alpha|^2 \cosh^{2}(r) + (1+{|\alpha|}^{2})\sinh^2 (r) - ({\alpha}^2 e^{-i\theta} + {\alpha^{*}}^2 e^{i\theta})\cosh (r) \sinh (r) </math> The general form of a '''displaced squeezed state''' for a quantum harmonic oscillator is given by :<math> |\zeta,\alpha\rangle = \hat{D}(\alpha)|\zeta\rangle = \hat{D}(\alpha) \hat{S}(\zeta)|0\rangle </math> Some expectation values for displaced squeezed state are :<math> \langle\zeta,\alpha | \hat a | \zeta,\alpha\rangle = \alpha </math> :<math> \langle\zeta,\alpha | {\hat{a}}^2 | \zeta,\alpha\rangle = \alpha ^{2} - e^{i\theta} \cosh (r) \sinh (r) </math> :<math> \langle\zeta,\alpha | {\hat{a}}^{\dagger}\hat{a} | \zeta,\alpha\rangle = |\alpha|^2 + \sinh^2 (r) </math> Since <math> \hat{S}(\zeta) </math> and <math> \hat{D}(\alpha)</math> do not commute with each other, : <math>\hat{S}(\zeta) \hat{D}(\alpha) \neq \hat{D}(\alpha) \hat{S}(\zeta)</math> :<math> | \alpha, \zeta \rangle \neq | \zeta, \alpha \rangle </math> where <math> \hat{D}(\alpha)\hat{S}(\zeta) =\hat{S}(\zeta)\hat{S}^{\dagger}(\zeta)\hat{D}(\alpha)\hat{S}(\zeta)= \hat{S}(\zeta)\hat{D}(\gamma)</math>, with <math> \gamma=\alpha\cosh r + \alpha^* e^{i\theta} \sinh r </math> <ref> M. M. Nieto and D. Truax (1995), {{cite journal|title=Holstein‐Primakoff/Bogoliubov Transformations and the Multiboson System|year=1997 |doi=10.1002/prop.2190450204|arxiv=quant-ph/9506025|last1=Nieto |first1=Michael Martin |last2=Truax |first2=D. Rodney |journal=Fortschritte der Physik/Progress of Physics |volume=45 |issue=2 |pages=145–156 |s2cid=14213781 }} Eqn (15). Note that in this reference, the definition of the squeeze operator (eqn. 12) differs by a minus sign inside the exponential, therefore the expression of <math>\gamma</math> is modified accordingly (<math>\theta \rightarrow \theta+\pi</math>). </ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)