Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Connection with Kepler problem and 3-body problem == At a superficial level, all of stellar dynamics might be formulated as an N-body problem by [[Newton's second law]], where the equation of motion (EOM) for internal interactions of an isolated stellar system of N members can be written down as, <math display="block">m_i\frac{d^{2} \mathbf{r_i}}{dt^{2}} = \sum_{i=1 \atop i \ne j}^N \frac{G m_i m_j \left(\mathbf{r}_j - \mathbf{r}_i\right)}{\left\| \mathbf{r}_j - \mathbf{r}_i\right\|^3}. </math> Here in the N-body system, any individual member, <math>m_i</math> is influenced by the gravitational potentials of the remaining <math>m_j</math> members. In practice, except for in the highest performance computer simulations, it is not feasible to calculate rigorously the future of a large N system this way. Also this EOM gives very little intuition. Historically, the methods utilised in stellar dynamics originated from the fields of both [[classical mechanics]] and [[statistical mechanics]]. In essence, the fundamental problem of stellar dynamics is the [[N-body problem]], where the N members refer to the members of a given stellar system. Given the large number of objects in a stellar system, stellar dynamics can address both the global, statistical properties of many orbits as well as the specific data on the positions and velocities of individual orbits.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)