Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Classifications=== A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the [[cardinality]] of the index set and the state space.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=26}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|pages=24, 25}}</ref> When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in '''[[discrete time]]'''.<ref name="Billingsley2008page482"/><ref name="Borovkov2013page527">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=527}}</ref> If the index set is some interval of the real line, then time is said to be '''[[continuous time|continuous]]'''. The two types of stochastic processes are respectively referred to as '''discrete-time''' and '''[[continuous-time stochastic process]]es'''.<ref name="KarlinTaylor2012page27"/><ref name="Brémaud2014page120"/><ref name="Rosenthal2006page177">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|pages=177–178}}</ref> Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable.<ref name="KloedenPlaten2013page63">{{cite book|author1=Peter E. Kloeden|author2=Eckhard Platen|title=Numerical Solution of Stochastic Differential Equations|url=https://books.google.com/books?id=r9r6CAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-12616-5|page=63}}</ref><ref name="Khoshnevisan2006page153">{{cite book|author1-link=Davar Khoshnevisan|author=Davar Khoshnevisan|title=Multiparameter Processes: An Introduction to Random Fields|url=https://books.google.com/books?id=XADpBwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21631-7|pages=153–155}}</ref> If the index set is the integers, or some subset of them, then the stochastic process can also be called a '''random sequence'''.<ref name="Borovkov2013page527"/> If the state space is the integers or natural numbers, then the stochastic process is called a '''discrete''' or '''integer-valued stochastic process'''. If the state space is the real line, then the stochastic process is referred to as a '''real-valued stochastic process''' or a '''process with continuous state space'''. If the state space is <math>n</math>-dimensional Euclidean space, then the stochastic process is called a <math>n</math>-'''dimensional vector process''' or <math>n</math>-'''vector process'''.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)