Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Supermodular function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Supermodularity in economics and game theory== The concept of supermodularity is used in the social sciences to analyze how one [[Agent (economics)|agent's]] decision affects the incentives of others. Consider a [[symmetric game]] with a smooth payoff function <math>\,f</math> defined over actions <math>\,z_i</math> of two or more players <math>i \in {1,2,\dots,N}</math>. Suppose the action space is continuous; for simplicity, suppose each action is chosen from an interval: <math>z_i \in [a,b]</math>. In this context, supermodularity of <math>\,f</math> implies that an increase in player <math>\,i</math>'s choice <math>\,z_i</math> increases the marginal payoff <math>df/dz_j</math> of action <math>\,z_j</math> for all other players <math>\,j</math>. That is, if any player <math>\,i</math> chooses a higher <math>\,z_i</math>, all other players <math>\,j</math> have an incentive to raise their choices <math>\,z_j</math> too. Following the terminology of Bulow, [[John Geanakoplos|Geanakoplos]], and [[Paul Klemperer|Klemperer]] (1985), economists call this situation [[strategic complements|strategic complementarity]], because players' strategies are complements to each other.<ref>{{cite journal |first1=Jeremy I. |last1=Bulow |first2=John D. |last2=Geanakoplos |first3=Paul D. |last3=Klemperer |year=1985 |title=Multimarket Oligopoly: Strategic Substitutes and Complements |journal=[[Journal of Political Economy]] |volume=93 |issue=3 |pages=488β511 |doi=10.1086/261312 |citeseerx=10.1.1.541.2368 |s2cid=154872708 }}</ref> This is the basic property underlying examples of [[General equilibrium#Uniqueness|multiple equilibria]] in [[coordination game]]s.<ref>{{cite journal |first1=Russell |last1=Cooper |first2=Andrew |last2=John |year=1988 |title=Coordinating coordination failures in Keynesian models |journal=[[Quarterly Journal of Economics]] |volume=103 |issue=3 |pages=441β463 |doi=10.2307/1885539 |jstor=1885539 |url=http://cowles.yale.edu/sites/default/files/files/pub/d07/d0745-r.pdf }}</ref> The opposite case of supermodularity of <math>\,f</math>, called submodularity, corresponds to the situation of [[strategic complements|strategic substitutability]]. An increase in <math>\,z_i</math> lowers the marginal payoff to all other player's choices <math>\,z_j</math>, so strategies are substitutes. That is, if <math>\,i</math> chooses a higher <math>\,z_i</math>, other players have an incentive to pick a ''lower'' <math>\,z_j</math>. For example, Bulow et al. consider the interactions of many [[Imperfect competition|imperfectly competitive]] firms. When an increase in output by one firm raises the marginal revenues of the other firms, production decisions are strategic complements. When an increase in output by one firm lowers the marginal revenues of the other firms, production decisions are strategic substitutes. A supermodular [[utility function]] is often related to [[complementary goods]]. However, this view is disputed.<ref>{{Cite journal|doi=10.1016/j.jet.2008.06.004 |title=Supermodularity and preferences |journal=[[Journal of Economic Theory]] |volume=144 |issue=3 |pages=1004 |year=2009 |last1=Chambers |first1=Christopher P. |last2=Echenique |first2=Federico |citeseerx=10.1.1.122.6861 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)