Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Symmetric matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == ===Basic properties=== * The sum and difference of two symmetric matrices is symmetric. * This is not always true for the [[matrix multiplication|product]]: given symmetric matrices <math>A</math> and <math>B</math>, then <math>AB</math> is symmetric if and only if <math>A</math> and <math>B</math> [[commutativity|commute]], i.e., if <math>AB=BA</math>. * For any integer <math>n</math>, <math>A^n</math> is symmetric if <math>A</math> is symmetric. * If <math>A^{-1}</math> exists, it is symmetric if and only if <math>A</math> is symmetric. * Rank of a symmetric matrix <math>A</math> is equal to the number of non-zero eigenvalues of <math>A</math>. ===Decomposition into symmetric and skew-symmetric=== Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let <math>\mbox{Mat}_n</math> denote the space of <math>n \times n</math> matrices. If <math>\mbox{Sym}_n</math> denotes the space of <math>n \times n</math> symmetric matrices and <math>\mbox{Skew}_n</math> the space of <math>n \times n</math> skew-symmetric matrices then <math>\mbox{Mat}_n = \mbox{Sym}_n + \mbox{Skew}_n</math> and <math>\mbox{Sym}_n \cap \mbox{Skew}_n = \{0\}</math>, i.e. <math display="block">\mbox{Mat}_n = \mbox{Sym}_n \oplus \mbox{Skew}_n , </math> where <math>\oplus</math> denotes the [[direct sum of modules|direct sum]]. Let <math>X \in \mbox{Mat}_n</math> then <math display="block">X = \frac{1}{2}\left(X + X^\textsf{T}\right) + \frac{1}{2}\left(X - X^\textsf{T}\right).</math> Notice that <math display="inline">\frac{1}{2}\left(X + X^\textsf{T}\right) \in \mbox{Sym}_n</math> and <math display="inline">\frac{1}{2} \left(X - X^\textsf{T}\right) \in \mathrm{Skew}_n</math>. This is true for every [[square matrix]] <math>X</math> with entries from any [[field (mathematics)|field]] whose [[characteristic (algebra)|characteristic]] is different from 2. A symmetric <math>n \times n</math> matrix is determined by <math>\tfrac{1}{2}n(n+1)</math> scalars (the number of entries on or above the [[main diagonal]]). Similarly, a [[skew-symmetric matrix]] is determined by <math>\tfrac{1}{2}n(n-1)</math> scalars (the number of entries above the main diagonal). === Matrix congruent to a symmetric matrix === Any matrix [[matrix congruence|congruent]] to a symmetric matrix is again symmetric: if <math>X</math> is a symmetric matrix, then so is <math>A X A^{\mathrm T}</math> for any matrix <math>A</math>. === Symmetry implies normality === A (real-valued) symmetric matrix is necessarily a [[normal matrix]]. === Real symmetric matrices === <!--If A is a skew-symmetric matrix, then ''iA'' (where ''i'' is an [[imaginary unit]]) is symmetric.--> Denote by <math>\langle \cdot,\cdot \rangle</math> the standard [[inner product]] on <math>\mathbb{R}^n</math>. The real <math>n \times n</math> matrix <math>A</math> is symmetric if and only if <math display="block">\langle Ax, y \rangle = \langle x, Ay \rangle \quad \forall x, y \in \mathbb{R}^n.</math> Since this definition is independent of the choice of [[basis (linear algebra)|basis]], symmetry is a property that depends only on the [[linear operator]] A and a choice of [[inner product]]. This characterization of symmetry is useful, for example, in [[differential geometry]], for each [[tangent space]] to a [[manifold]] may be endowed with an inner product, giving rise to what is called a [[Riemannian manifold]]. Another area where this formulation is used is in [[Hilbert space]]s. The finite-dimensional [[spectral theorem]] says that any symmetric matrix whose entries are [[real number|real]] can be [[diagonal matrix|diagonalized]] by an [[orthogonal matrix]]. More explicitly: For every real symmetric matrix <math>A</math> there exists a real orthogonal matrix <math>Q</math> such that <math>D = Q^{\mathrm T} A Q</math> is a [[diagonal matrix]]. Every real symmetric matrix is thus, [[up to]] choice of an [[orthonormal basis]], a diagonal matrix. If <math>A</math> and <math>B</math> are <math>n \times n</math> real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:<ref>{{Cite book|first=Richard |last=Bellman|title=Introduction to Matrix Analysis |language= en|edition=2nd|publisher=SIAM|year=1997|isbn=08-9871-399-4}}</ref> there exists a basis of <math>\mathbb{R}^n</math> such that every element of the basis is an [[eigenvector]] for both <math>A</math> and <math>B</math>. Every real symmetric matrix is [[Hermitian matrix|Hermitian]], and therefore all its [[eigenvalues]] are real. (In fact, the eigenvalues are the entries in the diagonal matrix <math>D</math> (above), and therefore <math>D</math> is uniquely determined by <math>A</math> up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices. === Complex symmetric matrices {{anchor|Complex}}=== A complex symmetric matrix can be 'diagonalized' using a [[unitary matrix]]: thus if <math>A</math> is a complex symmetric matrix, there is a unitary matrix <math>U</math> such that <math>U A U^{\mathrm T}</math> is a real diagonal matrix with non-negative entries. This result is referred to as the '''Autonne–Takagi factorization'''. It was originally proved by [[Léon Autonne]] (1915) and [[Teiji Takagi]] (1925) and rediscovered with different proofs by several other mathematicians.<ref>{{harvnb|Horn|Johnson|2013|pp=263,278}}</ref><ref>See: *{{citation|first=L.|last= Autonne|title= Sur les matrices hypohermitiennes et sur les matrices unitaires|journal= Ann. Univ. Lyon|volume= 38|year=1915|pages= 1–77|url=https://gallica.bnf.fr/ark:/12148/bpt6k69553b}} *{{citation|first=T.|last= Takagi|title= On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau|journal= Jpn. J. Math.|volume= 1 |year=1925|pages= 83–93|doi= 10.4099/jjm1924.1.0_83|doi-access= free}} *{{citation|title=Symplectic Geometry|first=Carl Ludwig|last= Siegel|journal= American Journal of Mathematics|volume= 65|issue=1 |year=1943|pages=1–86|jstor= 2371774|doi=10.2307/2371774|id=Lemma 1, page 12}} *{{citation|first=L.-K.|last= Hua|title= On the theory of automorphic functions of a matrix variable I–geometric basis|journal= Amer. J. Math.|volume= 66 |issue= 3|year=1944|pages= 470–488|doi=10.2307/2371910|jstor= 2371910}} *{{citation|first=I.|last= Schur|title= Ein Satz über quadratische Formen mit komplexen Koeffizienten|journal=Amer. J. Math. |volume=67 |issue= 4|year=1945|pages=472–480|doi=10.2307/2371974|jstor= 2371974}} *{{citation|first1=R.|last1= Benedetti|first2=P.|last2= Cragnolini|title=On simultaneous diagonalization of one Hermitian and one symmetric form|journal= Linear Algebra Appl. |volume=57 |year=1984| pages=215–226|doi=10.1016/0024-3795(84)90189-7|doi-access=free}} </ref> In fact, the matrix <math>B=A^{\dagger} A</math> is Hermitian and [[Definiteness of a matrix|positive semi-definite]], so there is a unitary matrix <math>V</math> such that <math>V^{\dagger} B V</math> is diagonal with non-negative real entries. Thus <math>C=V^{\mathrm T} A V</math> is complex symmetric with <math>C^{\dagger}C</math> real. Writing <math>C=X+iY</math> with <math>X</math> and <math>Y</math> real symmetric matrices, <math>C^{\dagger}C=X^2+Y^2+i(XY-YX)</math>. Thus <math>XY=YX</math>. Since <math>X</math> and <math>Y</math> commute, there is a real orthogonal matrix <math>W</math> such that both <math>W X W^{\mathrm T}</math> and <math>W Y W^{\mathrm T}</math> are diagonal. Setting <math>U=W V^{\mathrm T}</math> (a unitary matrix), the matrix <math>UAU^{\mathrm T}</math> is complex diagonal. Pre-multiplying <math>U</math> by a suitable diagonal unitary matrix (which preserves unitarity of <math>U</math>), the diagonal entries of <math>UAU^{\mathrm T}</math> can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as <math>UAU^\mathrm T = \operatorname{diag}(r_1 e^{i\theta_1},r_2 e^{i\theta_2}, \dots, r_n e^{i\theta_n})</math>. The matrix we seek is simply given by <math>D = \operatorname{diag}(e^{-i\theta_1/2},e^{-i\theta_2/2}, \dots, e^{-i\theta_n/2})</math>. Clearly <math>DUAU^\mathrm TD = \operatorname{diag}(r_1, r_2, \dots, r_n)</math> as desired, so we make the modification <math>U' = DU</math>. Since their squares are the eigenvalues of <math>A^{\dagger} A</math>, they coincide with the [[singular value]]s of <math>A</math>. (Note, about the eigen-decomposition of a complex symmetric matrix <math>A</math>, the Jordan normal form of <math>A</math> may not be diagonal, therefore <math>A</math> may not be diagonalized by any similarity transformation.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)