Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Syntactic monoid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Syntactic equivalence== The syntactic quotient induces an [[equivalence relation]] on <math>M</math>, called the '''syntactic relation''', or '''syntactic equivalence''' (induced by <math>S</math>). The '''right syntactic equivalence''' is the equivalence relation :<math>s \sim_S t \ \Leftrightarrow\ S \,/ \,s \;=\; S \,/ \,t \ \Leftrightarrow\ (\forall x\in M\colon\ xs \in S \Leftrightarrow xt \in S)</math>. Similarly, the '''left syntactic equivalence''' is :<math>s \;{}_S{\sim}\; t \ \Leftrightarrow\ s \setminus S \;=\; t \setminus S \ \Leftrightarrow\ (\forall y\in M\colon\ sy \in S \Leftrightarrow ty \in S)</math>. Observe that the ''right'' syntactic equivalence is a ''left'' [[congruence relation|congruence]] with respect to [[string concatenation]] and vice versa; i.e., <math>s \sim_S t \ \Rightarrow\ xs \sim_S xt\ </math> for all <math>x \in M</math>. The '''syntactic congruence''' or '''[[John Myhill|Myhill]] congruence'''<ref name=Hol160>Holcombe (1982) p.160</ref> is defined as<ref name=Law210>Lawson (2004) p.210</ref> :<math>s \equiv_S t \ \Leftrightarrow\ (\forall x, y\in M\colon\ xsy \in S \Leftrightarrow xty \in S)</math>. The definition extends to a congruence defined by a subset <math>S</math> of a general monoid <math>M</math>. A '''disjunctive set''' is a subset <math>S</math> such that the syntactic congruence defined by <math>S</math> is the equality relation.<ref name=Law232>Lawson (2004) p.232</ref> Let us call <math>[s]_S</math> the equivalence class of <math>s</math> for the syntactic congruence. The syntactic congruence is [[Quotient (universal algebra)|compatible]] with concatenation in the monoid, in that one has :<math>[s]_S[t]_S=[st]_S</math> for all <math>s,t\in M</math>. Thus, the syntactic quotient is a [[monoid morphism]], and induces a [[quotient monoid]] :<math>M(S)= M \ / \ {\equiv_S}</math>. This monoid <math>M(S)</math> is called the '''syntactic monoid''' of <math>S</math>. It can be shown that it is the smallest [[monoid]] that [[recognizable set|recognizes]] <math>S</math>; that is, <math>M(S)</math> recognizes <math>S</math>, and for every monoid <math>N</math> recognizing <math>S</math>, <math>M(S)</math> is a quotient of a [[submonoid]] of <math>N</math>. The syntactic monoid of <math>S</math> is also the [[transition monoid]] of the [[minimal automaton]] of <math>S</math>.<ref name=Hol160/><ref name=Law210/><ref name=S55>Straubing (1994) p.55</ref> A '''group language''' is one for which the syntactic monoid is a [[Group (mathematics)|group]].<ref name=Sak342>Sakarovitch (2009) p.342</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)