Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tangent half-angle formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs== ===Algebraic proofs=== Using the angle addition and subtraction formulae for both the sine and cosine one obtains <math display="block"> \begin{align} \sin (a+b) + \sin (a-b) &= 2 \sin a \cos b \\[15mu] \cos (a+b) + \cos (a-b) & = 2 \cos a \cos b\,. \end{align} </math> Setting <math display="inline">a= \tfrac12 (\eta+\theta)</math> and <math>b= \tfrac12 (\eta-\theta)</math> and substituting yields <math display="block"> \begin{align} \sin \eta + \sin \theta = 2 \sin \tfrac12(\eta+\theta) \, \cos \tfrac12(\eta-\theta) \\[15mu] \cos \eta + \cos \theta = 2 \cos\tfrac12(\eta+\theta) \, \cos\tfrac12(\eta-\theta)\,. \end{align} </math> Dividing the sum of sines by the sum of cosines gives <math display="block">\frac{\sin \eta + \sin \theta}{\cos \eta + \cos \theta} = \tan \tfrac12(\eta+\theta)\,.</math> Also, a similar calculation starting with <math>\sin (a+b) - \sin (a-b)</math> and <math>\cos (a+b) - \cos (a-b)</math> gives <math display="block">-\frac{\cos \eta - \cos \theta}{\sin \eta - \sin \theta} = \tan \tfrac12(\eta+\theta)\,.</math> Furthermore, using [[double-angle formulae]] and the Pythagorean identity <math display="inline">1 + \tan^2 \alpha = 1 \big/ \cos^2 \alpha</math> gives <math display="block"> \sin \alpha = 2\sin \tfrac12 \alpha \cos \tfrac12 \alpha = \frac{ 2 \sin \tfrac12 \alpha\, \cos \tfrac12 \alpha \Big/ \cos^2 \tfrac12 \alpha} {1 + \tan^2 \tfrac12 \alpha} = \frac{2\tan \tfrac12 \alpha}{1 + \tan^2 \tfrac12 \alpha} </math> <math display="block"> \cos \alpha = \cos^2 \tfrac12 \alpha - \sin^2 \tfrac12 \alpha = \frac{ \left(\cos^2 \tfrac12 \alpha - \sin^2 \tfrac12 \alpha\right) \Big/ \cos^2 \tfrac1 2 \alpha} { 1 + \tan^2 \tfrac12 \alpha} = \frac{1 - \tan^2 \tfrac12 \alpha}{1 + \tan^2 \tfrac12 \alpha}\,. </math> Taking the quotient of the formulae for sine and cosine yields <math display="block">\tan \alpha = \frac{2\tan \tfrac12 \alpha}{1 - \tan ^2 \tfrac12 \alpha}\,.</math> === Geometric proofs === [[File:Tan.half.svg|right|400px|thumb|The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is {{math|{{sfrac|1|2}} (''a'' + ''b'')}}. This is a geometric way to prove the particular tangent half-angle formula that says {{math|tan {{sfrac|1|2}} (''a'' + ''b'') {{=}} (sin ''a'' + sin ''b'') / (cos ''a'' + cos ''b'')}}. The formulae {{math|sin {{sfrac|1|2}}(''a'' + ''b'')}} and {{math|cos {{sfrac|1|2}}(''a'' + ''b'')}} are the ratios of the actual distances to the length of the diagonal.]] Applying the formulae derived above to the rhombus figure on the right, it is readily shown that <math display="block">\tan \tfrac12 (a+b) = \frac{\sin \tfrac12 (a + b)}{\cos \tfrac12 (a + b)} = \frac{\sin a + \sin b}{\cos a + \cos b}.</math> In the unit circle, application of the above shows that <math display="inline">t = \tan \tfrac12 \varphi</math>. By [[similar triangles|similarity of triangles]], <math display="block">\frac{t}{\sin \varphi} = \frac{1}{1+ \cos \varphi}.</math> It follows that <math display="block">t = \frac{\sin \varphi}{1+ \cos \varphi} = \frac{\sin \varphi(1- \cos \varphi)}{(1+ \cos \varphi)(1- \cos \varphi)} = \frac{1- \cos \varphi}{\sin \varphi}.</math> {{clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)