Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Telescoping series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * The product of a [[geometric series]] with initial term <math>a</math> and common ratio <math>r</math> by the factor <math>(1 - r)</math> yields a telescoping sum, which allows for a direct calculation of its limit:<ref>{{cite book |last1=Apostol |first1=Tom |title=Calculus, Volume 1 |date=1967 |publisher=John Wiley & Sons |edition=Second |page=388 |orig-date=1961}}</ref><math display="block">(1 - r) \sum^\infty_{n=0} ar^n = \sum^\infty_{n=0} \left(ar^n - ar^{n+1}\right) = a </math>when <math>|r| < 1,</math> so when <math>|r| < 1,</math> <math display="block"> \sum^\infty_{n=0} ar^n = \frac{a}{1 - r}.</math> * The series<math display="block">\sum_{n=1}^\infty\frac{1}{n(n+1)}</math>is the series of [[Multiplicative inverse|reciprocal]]s of [[pronic number]]s, and it is recognizable as a telescoping series once rewritten in [[Partial fraction decomposition|partial fraction]] form<ref name=":0" /> <math>\begin{align} \sum_{n=1}^\infty \frac{1}{n(n+1)} & {} = \sum_{n=1}^\infty \left( \frac{1}{n} - \frac{1}{n+1} \right) \\ {} & {} = \lim_{N\to\infty} \sum_{n=1}^N \left( \frac{1}{n} - \frac{1}{n+1} \right) \\ {} & {} = \lim_{N\to\infty} \left\lbrack {\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{N} - \frac{1}{N+1}\right) } \right\rbrack \\ {} & {} = \lim_{N\to\infty} \left\lbrack { 1 + \left( - \frac{1}{2} + \frac{1}{2}\right) + \left( - \frac{1}{3} + \frac{1}{3}\right) + \cdots + \left( - \frac{1}{N} + \frac{1}{N}\right) - \frac{1}{N+1} } \right\rbrack \\ {} & {} = \lim_{N\to\infty} \left\lbrack { 1 - \frac{1}{N+1} } \right\rbrack = 1. \end{align}</math> * Let ''k'' be a positive integer. Then<math display="block">\sum^\infty_{n=1} {\frac{1}{n(n+k)}} = \frac{H_k}{k} </math> where ''H''<sub>''k''</sub> is the ''k''th [[harmonic number]]. * Let ''k'' and ''m'' with ''k'' <math>\neq</math> ''m'' be positive integers. Then<math display="block">\sum^\infty_{n=1} {\frac{1}{(n+k)(n+k+1)\dots(n+m-1)(n+m)}} = \frac{1}{m-k} \cdot \frac{k!}{m!} </math> where <math>! </math> denotes the [[factorial]] operation. * Many [[trigonometric function]]s also admit representation as differences, which may reveal telescopic canceling between the consecutive terms. Using the [[angle addition identity]] for a product of sines,<math display="block">\begin{align} \sum_{n=1}^N \sin\left(n\right) & {} = \sum_{n=1}^N \frac{1}{2} \csc\left(\frac{1}{2}\right) \left(2\sin\left(\frac{1}{2}\right)\sin\left(n\right)\right) \\ & {} =\frac{1}{2} \csc\left(\frac{1}{2}\right) \sum_{n=1}^N \left(\cos\left(\frac{2n-1}{2}\right) -\cos\left(\frac{2n+1}{2}\right)\right) \\ & {} =\frac{1}{2} \csc\left(\frac{1}{2}\right) \left(\cos\left(\frac{1}{2}\right) -\cos\left(\frac{2N+1}{2}\right)\right), \end{align}</math> which does not converge as <math display="inline">N \rightarrow \infty.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)